WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

Contents
Foreword
Introduction L L L L L LUV
1. Scope 1
2. Normatve references 2
3. Terms, definitions, and symbols. 3
4. Conformanceo T
5. Environment : 9
5.1 Conceptualmodels e
5.1.1 'I?anslatlonenwronment. .
5.1.2 BExcution environments 11
5.2 Ewironmental considerations 17
5.2.1 Charactersets 4
5.2.2 Charactedlsplaysemantlcs e
5.2.3 Signalandinterrupts 20
5.2.4 Ewnironmental limits 20
6. Language . 24
61Notatlon..........................29
6.2 Concepts . . . e e e e e e 029
6.2.1 Scopesfldentlflers e e e e e e s 29
6.2.2 Linkage®f identifiers 30
6.2.3 Namespaces of identifiers 31
6.2.4 Storagéurations ofobjects N ¥4
6.25 Types . . . R X
6.2.6 Representatlomxitypes Coe < 7 4
6.2.7 Compatibléype and comp05|te type. c e e e 40
6.3 Comwvesions . . . e 24
6.3.1 Arlthmetlcoperands O
6.3.2 Otheroperands 46
6.4 Leicalelements 49
6.4.1 Keywords......................50
6.4.2 Identifiers oy |
6.4.3 Unversal characternames b3
644 Constants 5
6.4.5 Stringliterals 62
6.46 Punctuators 63
6.47 Headernames. 64
6.4.8 Preprocessingnumbers 65
649 Comments06
6.5 Expressions067

Contents iii

ISO/IEC 9899:TC3

6.6
6.7

6.8

6.9

6.10

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.12
6.5.13
6.5.14
6.5.15
6.5.16
6.5.17

Primaryexpressions

Postfix operators .

Unary operators

Cast operators .
Multiplicatve gperators
Additve qperators
Bitwiseshift operators .
Relational operators.
Equality operators
BitwiseAND operator
Bitwiseexclusive OR operator
Bitwise inclusie OR operator
LogicalAND operator
LogicalOR operator
Conditional operator
Assignment operators .
Comma operator .

Constanéxpressions .
Declarations

6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.7.7
6.7.8

Storage-class specifiers .
ype specifiers .

ype qualifiers

Function specifiers .
Declarators

ype names

ype definitions
Initialization

Statementand blocks

6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6

Labeled statements .
Compound statement .
Expressioand null statements
Selection statements .
Iteration statements .

Jump statements .

External definitions

6.9.1
6.9.2

Function definitions . .
Externabbject definitions

Preprocessing direatis

6.10.1
6.10.2
6.10.3
6.10.4
6.10.5
6.10.6

Conditional inclusion
Sourcéile inclusion
Macro replacement .
Line control

Error directie
Pragma direot

Contents

Committee Draft — Septermber 7, 2007

WG14/N1256

69

69

78

81

82

82

84

85

86

87

88

88

89

89

90

91

94

. 95
.97
98

. 99

. . 108
. 112

. 114

.. 122
. 123

. 125

.. 131
. 131

.. 132
. 132

. 133

. 135

. 136

. . 140
.. 141
. 143

. . 145
. 147

. 149

. 151

. 158

. 159

. 159

WG14/N1256

6.11

7. Library

7.1

7.2

7.3

7.4

7.5

7.6

7.7
7.8

6.10.7 Null directie .
6.10.8 Predefineohacro names .
6.10.9 Pragma operator .
Futurdanguage directions

6.11.1 Floating types .

6.11.2 Linkage®f identifiers

6.11.3 External names . .
6.11.4 Charactezscape sequences .
6.11.5 Storage-class specifiers .
6.11.6 Function declarators

6.11.7 Function definitions .

6.11.8 Pragma direots

6.11.9 Predefineohacro names .

Introductlon

7.1.1 Definitionsof terms

7.1.2 Standard headers.

7.1.3 Resemrd identifiers

7.1.4 Useof library functions
Diagnosticsassert.h>

7.2.1 Program diagnostics

Comple arithmetic<complex.h>

7.3.1 Introduction .

7.3.2 Conrentions .

7.3.3 Branchcuts . . . :
7.3.4 TheCX_LIMITED RANGEpragma :
7.3.5 Tigonometric functions .
7.3.6 Hyperbolic functions

7.3.7 Exponentiaand logarithmic functlons
7.3.8 Pwer and absolute-value functions .
7.3.9 Manipulation functions

Character handlingctype.h>

7.4.1 Characteclassification functlons
7.4.2 Characterase mapping functions .
Errors<errno.h> . .
Floating-point enwronmemfenv h>

7.6.1 TheFENV_ACCES$ragma

7.6.2 Floating-poinéxceptions

7.6.3 Rounding .

7.6.4 Environment :
Characteristicsf floating typegfloat h>
Format cowmersion of integer typesinttypes.h>
7.8.1 Macrodor format specifiers

7.8.2 Function$or greatest-width integer types .

Contents

CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

. . 160
. 160
. 161
. 163
. . 163
. 163
. . 163
. 163
. 163
. 163
. 163
. . 163
. 163

. .164
. . 164
. 164

. 165

. . 166
. 166

. 169

. . 169
. 170

. 170
171

. 171
. 171

. 172

.. 174
. 176
. 177

. 178

.. 181
. 181

. 184

. . 186
. 187

. 189

. 190

. .193
. .194
.. 197
. 198
. . 198
. 199

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007

Vi

7.9 Alternatve ellings<iso646.h>
7.10 Sizeof integer typeslimits.h>
7.11 Localizatior<locale.h>

7.12

7.13

7.14

7.15

7.16

7.17
7.18

7.19

7.11.1
7.11.2

Locale control .
Numeridormatting conentlon mquwy

Mathematicsmath.h>

7.12.1
7.12.2
7.12.3
7.12.4
7.12.5
7.12.6
7.12.7
7.12.8
7.12.9
7.12.10
7.12.11
7.12.12
7.12.13
7.12.14

Teatment of error condltlons
TheFP_CONTRACPragma
Classification macros .
Tigonometric functions

Hyperbolic functions

Exponentiadnd logarithmic functlons
Pwer and absolute-value functions .
Erromand gamma functions .

Nearest inger functions .
Remainder functions .

Manipulation functions
Maximumminimum, and posive dfference functlons
Floating multiply-add .

Comparison macros.

Nonlocal jumpssetjmp.h>

7.13.1
7.13.2

Sae alling environment
Restorealling environment

Signal handlingsignal.h>

7.14.1
7.14.2

Specifsignal handling .
Send signal . .

\ariable argumentsstdarg.h>

7.15.1

\ariable argument list access macros .

Boolearnype and valuesstdbool.h>
Common definitionsstddef.h>
Intger types<stdint.h>

7.18.1
7.18.2
7.18.3
7.18.4

Intger types .
Limitsof specified- W|dth mteger types .
Limitsof other integer types
Macrodor integer constants

Input/outpukstdio.h>

7.19.1
7.19.2
7.19.3
7.19.4
7.19.5
7.19.6
7.19.7
7.19.8

Introduction .

Streams

Files . .

Operationsn flles

Fileaccess functions

fermatted input/output functlons
Charactanput/output functions .
Direcinput/output functions

Contents

WG14/N1256

. 202

. 203

. 204

. . 205
. 206
.. 212
. 214

. 215

. 216

. 218

.. 221
. 223
. 228
. 230

. 231

. 235

. 236

. 238
. 239

. . 240
. 243

. 243

. 244

. 246

. 247

. . 248
. . 249
. 249
. 253

. 254

. 255

. . 255
. 257
. 259

. 260

. 262

. 262

. 264

. . 266
. 268

. . 270
. 274

. 296

. 301

WG14/N1256

7.20

7.21

1.22
7.23

7.24

7.25

7.26

7.19.9 Filepositioning functions

7.19.10 Errothandling functions .

General utilitiesstdlib.h> .o

7.20.1 Numeric corersion functions .

7.20.2 Pseudo-randosequence generation functlons
7.20.3 Memorymanagement functions .

7.20.4 Communicatiowith the environment

7.20.5 Searchingnd sorting utilities .

7.20.6 Intger arithmetic functions .

7.20.7 Multibyte/widecharacter corersion functlons
7.20.8 Multibyte/widestring cowersion functions
String handlingstring.h>

7.21.1 Stringunction conentions

7.21.2 Coping functions

7.21.3 Concatenation functions .

7.21.4 Comparison functions .

7.21.5 Search functions .

7.21.6 Miscellaneous functions .

Type-generic matktgmath.h>

Dateand time<time.h>

7.23.1 Componenwf time :

7.23.2 Tme manipulation functions

7.23.3 Tme corversion functions

Extendednultibyte and wide character utllltlesvchar h>
7.24.1 Introduction . :

7.24.2 Brmatted wide character mput/output functlons
7.24.3 Wde character input/output functions .
7.24.4 Generalide string utilities

7.24.5 Wde character time coarsion functlons

7.24.6 Extendedhultibyte/wide character coarsion utllltles

Wde character classification and mapping utlllttm:type h>
7.25.1 Introduction .

7.25.2 \Wde character cIaSS|f|cat|on utllltles

7.25.3 Wde character case mapping utilities .
Futurdibrary directions : .

7.26.1 Comple arlthmet|c<complex h>

7.26.2 Character handlingctype.h>

7.26.3 Errorerrno.h> .

7.26.4 ermat conersion of mteger typesmttypes h>
7.26.5 Localizatiorxlocale.h>

7.26.6 Signal handlingsignal.h> .

7.26.7 Booleaype and valuesstdbool.h>

7.26.8 Intger types<stdint.h>

7.26.9 Input/outpusstdio.h>

Contents

CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

. 302

. 304

. . 306
. . 307
. 312
. . 313
. 315

. 318

. . 320
. 321
. 323
. . 325
. 325

. . 325
. 327

. 328

. .330
. 333

. 335

. 338

. . 338
. 339
.. 341
. 348
. . 348
. 349
. 367
.. 371
. 385

386
393

. .393
. 394

. 399

. . 401
. 401

. 401

. . 401
. 401
. 401

. . 401
. 401
. 401

. 402

Vil

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007

7.26.10 General utilitiesstdlib.h>

7.26.11 String handlingstring.h>

7.26.12 Extendethultibyte and wide character utllltles
<wchar.h> .

7.26.13 Wde character classrflcatlon and mapplng utllltles
<wctype.h>

Annex A (informatve) Language syntax summary .

Al
A.2
A3

Lexical grammar .
Phrasestructure grammar .
Preprocessing diregs

Annex B (informative) Library summary

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.24

Diagnosticxassert.h>
Complex<complex.h>

Character handlingctype.h>
Errors<errno.h> .
Floating-point envwonmerﬁfenv h>
Characteristicef floating types<float.h>
Format conersion of integer typesinttypes.h>
Alternatve pellings<iso646.h>
Sizeof integer typeslimits.h>
Localizatiorxlocale.h>
Mathematicsmath.h>

Nonlocal jumpssetjmp.h>

Signal handlingsignal.h>

Variable argumentsstdarg.h>
Booleartype and valuesstdbool.h>
Common definitionsstddef.h>

Integer types<stdint.h>
Input/outpukstdio.h>

General utilitiesstdlib.h>

String handling:string.h>

Type-generic matktgmath.h>

Dateand time<time.h> :
Extendeanultibyte/wide character utllltleswchar h>

Wde character classification and mapping utilitestype.h>

Annex C (informative) Sequence points .

Annex D (normative) Universal character names for identifiers .

Annex E (informative) Implementation limits

Annex F (normatve) IEC 60559 floating-point arithmetic.

Fl
F.2
F.3

viii

Introduction
Types :
Operators and functlons

Contents

WG14/N1256

. 402
. 402

. 402

. 402

. 403
. . 403
. 409

. 416

. 419

. 419

. . 419
. 421

. .421
.. 421
.. 422
. 422
. 423

. 423

. 423

. . 423
. 428

. . 428
. . 428
. 428

. 429

. 429

. . 429
. 431

. . 433
. 434

. . 434
. 435
437

. 439
. 440
. 442

. 444
. 444

. .444
. 445

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

F4 Hoating to integer corersion
F5 Binary-decimal coversion
F.6 Contracted expressions .
F.7 Hoating-point environment
F.8 Optimization

F9 Mathematicsmath. h>

Annex G (informatve) IEC 60559-compatible compl@rithmetic
G.1 Introduction
G.2 Types
G.3 Cowentions
G.4 Cowersions
G.5 Binary operators
G.6 Comple arlthmet|c<complex h>
G.7 Type-generic matktgmath.h>

Annex H (informative) Language independent arithmetic
H.1 Introduction
H.2 Types
H.3 Notification

Annex | (informatve) Common warnings

Annex J (informative) Portability issues .
J.1 Unspecified behavior.
J.2 Undefined behavior
J.3 Implementation-defined behaV|or
J.4 Locale-specific behavior
J.5 Commorextensions

Bibliography
Index

Contents

. 447
. 447
. . 448
. 448
. .451
. 454

. 467
. 467

. .467
. 467

. .468
. . 468
. 472

. 480

. 481
.481

. .481
. 485

. 487

. 489
. 489
. . 492
. 505
. 512
. 513

.516
.519

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

X Contents

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

Foreword

ISO (the International @enization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. Nationdbodies that are member of ISO or IEC participate in the
development of International Standards through technical committees established by the
respectre aganization to deal with particular fields of technical activitgO and IEC
technical committees collaborate in fields of mutual interest. Other international
organizations, geernmental and non-gernmental, in liaison with ISO and IEC, also
take part in the work.

International Standards are drafted in accordance with the rves igi the ISO/IEC
Directives, Part 3.

In the field of information technologySO and IEC hae established a joint technical
committee, ISO/IEC JTQ. DraftInternational Standards adopted by the joint technical
committee are circulated to national bodies foting. Publicationas an International
Standard requires apmab by at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 9899asv prepared by Joint Technical Committee
ISO/IEC JTC 1)nformation technologySubcommittee SC 2R rogramming languges,
their environments and system softevarterfaces The Working Group responsible for
this standard (WG 14) maintains a site on theorld Wide Web at |
http://www.open-std.org/JTC1/SC22/WG14/ containing additional
information rel@ant to this standard such as a Rationale forymdrihe decisions made
during its preparation and a log of Defect Reports and Responses.

This second edition cancels and replaces the first edition, ISO/IEC 9899:1990, as
amended and corrected by ISO/IEC 9899/COR1:1994, ISO/IEC 9899/AMD1:1995, and
ISO/IEC 9899/COR2:1996. Major changes from the previous edition include:

— restricted character set support via digraphs<aed646.h> (originally specified
in AMD1)

— wide character library support irkwchar.h> and <wctype.h> (originally
specified in AMD1)

— more precise aliasing rules via effeetitype

— restricted pointers

— variable length arrays

— flexible array members

— static and type qualifiers in parameter array declarators
— complex (and imaginary) support kcomplex.h>

— type-generic math macros #ttgmath.h>

— thelong long int type and library functions

Foreword Xi

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007

Xil

increased minimum translation limits

additional floating-point characteristics €float.h>
remove implicit int

reliable integer division

universal character namesi(and\U)

extended identifiers

hexadecimal floating-point constants afth and %A printf /scanf
specifiers

compound literals

designated initializers

/[comments

extended integer types and library functionsinttypes.h> and<stdi
remove implicit function declaration

preprocessor arithmetic doneimimax_t /uintmax_t

mixed declarations and code

new Hock scopes for selection and iteration statements

integer constant type rules

integer promotion rules

macros with a variable number of arguments

thevscanf family of functions in<stdio.h> and<wchar.h>
additional math library functions ikmath.h>

treatment of error conditions by math library functiomath_errhandling
floating-point environment access<ifenv.h>

IEC 60559 (also known as IEC 559 or IEEE arithmetic) support
trailing comma allowed ienum declaration

%If corversion specifier allowed iprintf

inline functions

thesnprintf family of functions in<stdio.h>

boolean type irkstdbool.h>

idempotent type qualifiers

empty macro arguments

Foreword

WG14/N1256

cornversion

nt.h>

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

— new dructure type compatibility rules (tag compatibility) |
— additional predefined macro names

— _Pragma preprocessing operator

— standard pragmas

— __func__ predefined identifier

— va_copy macro

— additionalstrftime corversion specifiers

— LIA compatibility annex

— deprecataingetc at the beginning of a binary file

— remove ceprecation of aliased array parameters

— corversion of array to pointer not limited to Ilvalues
— relaxed constraints on aggeee and union initialization
— relaxed restrictions on portable header names

— return without expression not permitted in function that returns a value (and vice
versa)

Annexes D and F form a normate part of this standard; anxes A, B, C, E, G, H, I, J,
the bibliograply, and the ind& are for information only In accordance with Part 3 of the
ISO/IEC Directves, this forgvord, the introduction, notes, footnotes, an@raples are
also for information only.

Foreword Xili

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Introduction

With the introduction of ne devices and ¥tended character sets,wéeatures may be

added to this International Standard. Subclauses in the language and library clauses warn
iImplementors and programmers of usages which, though valid in themselves, may
conflict with future additions.

Certain features arebsolescent which means that tlge may be considered for
withdrawal in future revisions of this International Standard. yaee retained because
of their widespread use,ub their use in ng implementations (for implementation
features) or n& programs (for language [6.11] or library features [7.26]) is discouraged.

This International Standard is divided into four major subdivisions:

— preliminary elements (clauses 1-4);

— the characteristics of environments that translate aexlite C programs (clause 5);
— the language syntax, constraints, and semantics (clause 6);

— the library facilities (clause 7).

Examples are provided to illustrate possible forms of the constructions described.
Footnotes are prmoded to emphasize consequences of the rules described in that
subclause or elsewhere in this International Standard. References are used to refer to
other related subclauseRecommendations are provided toegedvice or guidance to
implementors. Annes provide additional information and summarize the information
contained in this International Standaré bibliograply lists documents that were
referred to during the preparation of the standard.

The language clause (clause 6) is\@erfrom “The C Reference Manual”.
The library clause (clause 7) is based orl®f4 /usr/group Standard

Xiv Introduction

INTERN ATIONAL STANDARD ©ISO/IEC ISO/IEC 9899:TC3

Programming languages — C

1. Scope

This International Standard specifies the form and establishes the interpretation of
programs written in the C programming langu®gé#.specifies

— the representation of C programs;

— the syntax and constraints of the C language;

— the semantic rules for interpreting C programs;

— the representation of input data to be processed by C programs;

— the representation of output data produced by C programs;

— the restrictions and limits imposed by a conforming implementation of C.
This International Standard does not specify

— the mechanism by which C programs are transformed for use by a data-processing
system;

— the mechanism by which C programs areoked for use by a data-processing
system;

— the mechanism by which input data are transformed for use by a C program;

— the mechanism by which output data are transformed after being produced by a C
program;

— the size or complexity of a program and its data that will exceed the capacity of any
specific data-processing system or the capacity of a particular processor;

1) This International Standard is designed to promote the portability of C programs ameaniefyaof
data-processing systems. It is intended for use by implementors and programmers.

81 General 1

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

— all minimal requirements of a data-processing system that is capable of supporting a
conforming implementation.

2. Normative references

The following normatie documents contain provisions which, through reference in this
text, constitute preisions of this International StandardFor dated references,
subsequent amendments to, or revisions of, @inthese publications do not apply.
However, parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the nomnati
documents indicated belo For undated references, the latest edition of the norenati
document referred to applies. Members of ISO and IEC maintain registers of currently
valid International Standards.

ISO 31-11:1992Quantities and units — Part 11. Mathematical signs and symbols for
use in the physical sciences and technalogy

ISO/IEC 646,Information technology 4SO 7-bit coded chaacter set for information
interchange

ISO/IEC 2382-1:1993Information technology — Vocabulary — Part 1. Fundamental
terms

ISO 4217 Codes for the representation of currencies and funds

ISO 8601, Data elements and intgllange formats — Information intehange —
Repesentation of dates and times

ISO/IEC 10646(all parts),Information technolgy — Universal Multiple-Octet Coded
Character Set (UCS)

IEC 60559:1989%Binary floating-point arithmetic for microprocessor systépreviously
designated IEC 559:1989).

2 General 82

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

3. Terms, definitions, and symbols

For the purposes of this International Standard, the following definitions .agpher
terms are defined where theppear initalic type or on the left side of a syntax rule.
Terms eplicitly defined in this International Standard are not to be presumed to refer
implicitly to similar terms defined eladere. Brms not defined in this International
Standard are to be interpreted according to ISOAB&2-1. Mathematicaymbols not
defined in this International Standard are to be interpreted according to ISO 31-11.

3.1
access
[@éxecution-time actioato read or modify the value of an object

NOTE 1 Where only one of thesedwctions is meant, “reatlor ‘‘modify’’ is used.
NOTE 2 "Modify” includes the case where thevnglue being stored is the same as the previous value.

NOTE 3 Expressions that are netleated do not access objects.

3.2

alignment

requirement that objects of a particular type be located on storage boundaries with
addresses that are particular multiples of a byte address

3.3

argument

actual argument

actual parameter (deprecated)

expression in the comma-separated list bounded by the parentheses in a function call
expression, or a sequence of preprocessing tokens in the comma-separated list bounded
by the parentheses in a functionelikacro irvocation

3.4
behavior
external appearance or action

34.1
implementation-defined behavior
unspecified behavior where each implementation documentthlecchoice is made

EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit
when a signed integer is shifted right.

3.4.2

locale-specific behavior

behaior that depends on local agmtions of nationalityculture, and language that each
implementation documents

83.4.2 General 3

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

EXAMPLE An example of locale-specific behavior is whether idlewer function returns true for
characters other than the 26 lowercase Latin letters.

3.4.3

undefined behavior

behavior upon use of a nonportable or erroneous program construct or of erroneous data,
for which this International Standard imposes no requirements

NOTE Possibleundefined behavior ranges from ignoring the situation completely with unpredictable
results, to behaving during translation or prograecetion in a documented manner characteristic of the

ervironment (with or without the issuance of a diagnostic message), to terminating a translation or
execution (with the issuance of a diagnostic message).

EXAMPLE Anexample of undefined behavior is the behavior on integeflow.

344

unspecified behavior

use of an unspecified value, or other behavior where this International Standéddsio
two or more possibilities and imposes no further requirements on which is chosen in any
instance

EXAMPLE An example of unspecified behavior is the order in which tigeraents to a function are
eveuated.

3.5
bit

unit of data storage in theeacution environment large enough to hold an object that may
have ane of two values

NOTE It need not be possible to express the address of each individual bit of an object.

3.6

byte

addressable unit of data storage large enough to hglcthamber of the basic character
set of the recution environment

NOTE 1 Itis possible to express the address of each individual byte of an object uniquely.

NOTE 2 A byte is composed of a contiguous sequence of bits, the number of which is implementation-
defined. Thdeast significant bit is called thew-order bit; the most significant bit is called thegh-order

bit.

3.7

character

[Abstradil member of a set of elements used for thgawration, control, or
representation of data

3.7.1

character

single-byte character

[C[hit representation that fits in a byte

4 General 83.7.1

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

3.7.2

multibyte character

sequence of one or more bytes representing a member oftémeled character set of
either the source or theeeution environment

NOTE Theextended character set is a superset of the basic character set.

3.7.3

wide character

bit representation that fits in an object of typehar_t , capable of representing any
character in the current locale

3.8

constraint

restriction, either syntactic or semantic, by which the exposition of language elements is
to be interpreted

3.9

correctly rounded result

representation in the result format that is nearesalimey subject to the current rounding
mode, to what the result would bergn unlimited range and precision

3.10

diagnostic message

message belonging to an implementation-defined subset of the implementatissage
output

3.11

forward reference

reference to a later subclause of this International Standard that contains additional
information rele@ant to this subclause

3.12

implementation

particular set of software, running in a particular translatimr@mment under particular
control options, that performs translation of programs &od supports »xecution of
functions in, a particularxecution environment

3.13
implementation limit
restriction imposed upon programs by the implementation

3.14

object

region of data storage in theegution environment, the contents of which can represent
vaues

83.14 General 5

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

NOTE Whenreferenced, an object may be interpreted as having a particular type; see 6.3.2.1.

3.15

parameter

formal parameter

formal argument (deprecated)

object declared as part of a function declaration or definition that acquir@sieaon

entry to the function, or an identifier from the comma-separated list bounded by the
parentheses immediately following the macro name in a functien¥iiicro definition

3.16

recommended practice

specification that is strongly recommended as being in keeping with the intent of the
standard, but that may be impractical for some implementations

3.17
value
precise meaning of the contents of an object when interpreted as having a specific type

3.17.1
implementation-defined value
unspecified value where each implementation documentshgochoice is made

3.17.2
indeterminate value
either an unspecified value or a trap representation

3.17.3

unspecified value

valid value of the relant type where this International Standard imposes no
requirements on which value is chosen iy enstance

NOTE Anunspecified value cannot be a trap representation.

3.18

XO
ceiling of x: the least integer greater than or equat to

EXAMPLE [2.40js 3,[32. 47js -2.

3.19

XO
floor of x: the greatest integer less than or equal to

EXAMPLE [2.40js 2, (2. 47jis -3.

6 General 83.19

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

4. Conformance

In this International Standard, “shallis to be interpreted as a requirement on an
implementation or on a program; eersely “shall not’ is to be interpreted as a
prohibition.

If a “shall” or “‘shall not’ requirement that appears outside of a constraint is violated, the
behaior is undefined. Undefined behavior is otherwise indicated in this International
Standard by the words “undefined behavior’by the omission of anexplicit definition

of behavior There is no dference in emphasis among these threey #fledescribe

“ behavior that is undefined”.

A program that is correct in all other aspects, operating on correct data, containing
unspecified behavior shall be a correct program and act in accordance with 5.1.2.3.

The implementation shall not successfully translate a preprocessing translation unit
containing a#error preprocessing diree® wless it is part of a group skipped by
conditional inclusion.

A strictly conforming pogram shall use only those features of the language and library
specified in this International Stand&tdlt shall not produce output dependent on any
unspecified, undefined, or implementation-defined behaamal shall not exceed any
minimum implementation limit.

The two forms ofconforming implementatioare hosted and freestanding.cénforming
hosted implementatioshall accept an strictly conforming program. Aconforming
freestanding implementatiaghall accept anstrictly conforming program that does not
use comple types and in which the use of the features specified in the library clause
(clause 7) is confined to the contents of the standard headtat.h>
<is0646.h> , <limits.h> , <stdarg.h> | <stdbool.h> | <stddef.h> , and
<stdint.h> . A conforming implementation may & exensions (including additional
library functions), provided tlyedo ot alter the behavior of gnstrictly conforming
program?)

2) A strictly conforming program can use conditional features (such as those i Enp®vided the
use is guarded by#ifdef directive with the appropriate macrd=or example:

#ifdef _ _STDC_IEC_559 _ /* FE_UPWARD defined */
*
fesetround(FE_UPWARD);
*

#endif

3) This implies that a conforming implementation reserves no identifiers other than those explicitly
resered in this International Standard.

84 General 7

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

A conforming pogramis one that is acceptable to a conforming implement&tion.

An implementation shall be accompanied by a document that defines all implementation-
defined and locale-specific characteristics and all extensions.

Forward references: conditional inclusion (6.10.1), error direai 6.10.5),
characteristics of floating typedloat.h> (7.7), alternatie pellings <iso646.h>
(7.9), sizes of integer typedimits.h> (7.10), variable argumentsstdarg.h>
(7.15), boolean type and valuesstdbool.h> (7.16), common definitions
<stddef.h> (7.17), integer typesstdint.h> (7.18).

4) Strictly conforming programs are intended to be maximally portable among conforming
implementations. Conformingrograms may depend upon nonportable features of a conforming
implementation.

8 General 84

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

5. Environment

An implementation translates C source files ardctes C programs in twdata-
processing-system environments, which will be calledttéweslation environmenand

the execution environmenn this International Standard’heir characteristics define and
constrain the results ofkecuting conforming C programs constructed according to the
syntactic and semantic rules for conforming implementations.

Forward references: In this clause, only a ve of mary possible forward references
have been noted.

5.1 Conceptual models
5.1.1 Translation environment
5.1.1.1 Pobgram structure

A C program need not all be translated at the same tirhe.text of the program is kept

in units calledsource files (or preprocessing filgsin this International Standard. A
source file together with all the headers and source files included via the preprocessing
directive #include is known as greprocessing translation unitAfter preprocessing, a
preprocessing translation unit is callettanslation unit Previously translated translation

units may be preserved individually or in libraries. The separate translation units of a
program communicate by (fox@mple) calls to functions whose identifiervd@xernal
linkage, manipulation of objects whose identifiergehesternal linkage, or manipulation

of data files. Translation units may be separately translated and then lated litak
produce anecutable program.

Forward references: linkages of identifiers (6.2.2), external definitions (6.9),
preprocessing direets (6.10).
5.1.1.2 Tanslation phases

The precedence among the syntax rules of translation is specified by the following
phases)

1. Ptlysical source file multibyte characters are mapped, in an implementation-
defined mannerto the source character set (introducing new-line characters for
end-of-line indicators) if necessaryTrigraph sequences are replaced by
corresponding single-character internal representations.

5) Implementations shall betxa as if these separate phases ogeuen though maw are typically folded
together in practice.Source files, translation units, and translated translation units need not
necessarily be stored as files, nor need thereperato-one correspondence between these entities
and ay external representationThe description is conceptual onlgnd does not specify &n |
particular implementation.

85.1.1.2 Exironment 9

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

2. Eachinstance of a backslash charactey immediately followed by a new-line
character is deleted, splicing physical source lines to form logical source lines.
Only the last backslash onyaphysical source line shall be eligible for being part
of such a spliceA source file that is not empty shall end in avdae character,
which shall not be immediately preceded by a backslash character bgfeuelan
splicing takes place.

3. The source file is decomposed into preprocessing tSkeared sequences of
white-space characters (including comment&)source file shall not end in a
partial preprocessing token or in a partial comment. Each comment is replaced by
one space characteNew-line characters are retained. Whether each nonempty
sequence of white-space characters other tharline is retained or replaced by
one space character is implementation-defined.

4. Preprocessing direggs ae eecuted, macro wocations are expanded, and
_Pragma unary operatorgressions arexecuted. Ifa dharacter sequence that
matches the syntax of a wuaisal character name is produced by token
concatenation (6.10.3.3), the behavior is undefinedindlude preprocessing
directve causes the named header or source file to be processed from phase 1
through phase 4, recwsly. All preprocessing directes ae then deleted.

5. Eachsource character set member and escape sequence in character constants and
string literals is coverted to the corresponding member of tkecation character
set; if there is no corresponding membheiis corverted to an implementation-
defined member other than the null (wide) chardéter.

6. Adjacentstring literal tokens are concatenated.

7. White-spacecharacters separating tokens are no longer significant. Each
preprocessing token is oamted into a tokn. The resulting tokens are
syntactically and semantically analyzed and translated as a translation unit.

8. All external object and function references are resbh_ibrarycomponents are
linked to satisfy external references to functions and objects not defined in the
current translation. All such translator output is collected into a program image
which contains information needed foteeution in its &ecution environment.

Forward references: universal character names (6.4.3), lexical elements (6.4),
preprocessing direets (6.10), trigraph sequences (5.2.1.1), external definitions (6.9).

6) As described in 6.4, the process of dividing a sources fdgaracters into preprocessing ¢ols is
contxt-dependent. & example, see the handling<ofvithin a#include preprocessing direet.

7) An implementation need not ogant all non-corresponding source characters to the sasoeitéon
character.

10 Ervironment 85.1.1.2

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

5.1.1.3 Diagnostics

A conforming implementation shall produce at least one diagnostic message (identified in
an implementation-defined manner) if a preprocessing translation unit or translation unit
contains a violation of gnsyntax rule or constraintyven if the behwior is also explicitly
specified as undefined or implementation-defined. Diagnostic messages need not be
produced in other circumstanc®s.

EXAMPLE Animplementation shall issue a diagnostic for the translation unit:

chari;

int i
because in those cases where wording in this International Standard describesvibe floetzaconstruct
as being both a constraint error and resulting in undefined behtagi@onstraint error shall be diagnosed.

5.1.2 Execution environments

Two execution enironments are definedfreestandingand hosted In both cases,
program dartup occurs when a designated C function is called by thecudion
ervironment. All objects with static storage duration shall ibtialized (set to their
initial values) before program startup. The manner and timing of such initialization are
otherwise unspecified. Program termination returns control to the xecution
environment.

Forward references: storage durations of objects (6.2.4), initialization (6.7.8).
5.1.2.1 Feestanding environment

In a freestanding environment (in which C prograsecation may tak gace without any
benefit of an operating system), the name and type of the function called at program
startup are implementation-defined. yAhbrary facilities aailable to a freestanding
program, other than the minimal set required by clause 4, are implementation-defined.

The effect of program termination in a freestandingirenment is implementation-
defined.

5.1.2.2 Hosted environment

A hosted environment need not be provided, but shall conform to the following
specifications if present.

8) The intent is that an implementation should identify the nature of, and where possible localize, each
violation. Of course, an implementation is free to producg mumber of diagnostics as long as a
valid program is still correctly translated. It may also successfully translatevaiia iprogram.

8§5.1.2.2 Exironment 11

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

5.1.2.2.1 Pogram startup

The function called at program startup is namean . The implementation declares no
prototype for this function. It shall be defined with a return typenbf and with no
parameters:

int main(void) { /* o ¥}

or with two parameters (referred to hereagc andargv , though ag names may be
used, as theare local to the function in which tii@re declared):

int main(int argc, char *argv[]) { /* o ¥}
or equialent? or in some other implementation-defined manner.

If they are declared, the parameters to tin@in function shall obg the following
constraints:

— The value ofairgc shall be nonngtive.
— argvlargc] shall be a null pointer.

— If the value ofargc is greater than zero, the array membanrgv[0] through
argv[argc-1] inclusve all contain pointers to strings, which arevegi
implementation-definedalues by the host environment prior to program startup. The
intent is to supply to the program information determined prior to program startup
from elsewhere in the hostedveonment. Ifthe host environment is not capable of
supplying strings with letters in both uppercase and lowercase, the implementation
shall ensure that the strings are reegin lowercase.

— If the \alue of argc is greater than zero, the string pointed to drgv[0]
represents thegrogram rame argv[0][0] shall be the null character if the
program name is notvalable from the host eironment. Ifthe value ofargc is
greater than one, the strings pointed to agv[l] through argvlargc-1]
represent therogram parameters

— The parameterargc andargv and the strings pointed to by thegv array shall
be modifiable by the program, and retain their last-stored values between program
startup and program termination.

5.1.2.2.2 Pogram execution

In a hosted environment, a program may use all the functions, macros, type definitions,
and objects described in the library clause (clause 7).

9) Thus,int can be replaced by a typedef name definadtas or the type ofargv can be written as
char ** argv , and so on.

12 Ervironment 8§5.1.2.2.2

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

5.1.2.2.3 Pogram termination

If the return type of thenain function is a type compatible wiiht , a return from the
initial call to themain function is equialent to calling theexit function with the value
returned by themain function as its argumen® reaching the} that terminates the
main function returns aalue of 0. If the return type is not compatible wirh , the
termination status returned to the host environment is unspecified.

Forward references: definition of terms (7.1.1), thexit function (7.20.4.3).
5.1.2.3 Ppgram execution

The semantic descriptions in this International Standard describe theidoebfan
abstract machine in which issues of optimization are waate

Accessing a elatile object, modifying an object, modifying a file, or calling a function
that does anof those operations are aide effectd? which are changes in the state of
the eecution ewvironment. Ewluation of an expression may produce sideces. At
certain specified points in theeeution sequence callestquence pointgll side effects

of previous gauations shall be complete and no side effects of subsequatnateons
shall hae taken place. (A summary of the sequence pointsviengn annex C.)

In the abstract machine, all expressions asbuated as specified by the semantics. An
actual implementation need notakiate part of an expression if it can deduce that its
value is not used and that no needed side effects are produced (inclugiceused by
calling a function or accessing a volatile object).

When the processing of the abstract machine is interrupted by receipt of a signal, only the
values of objects as of the previous sequence point may be relied on. Objects that may be
modified between the previous sequence point and tteseguence point need notvea
receved their correct values yet.

The least requirements on a conforming implementation are:

— At sequence points,olatile objects are stable in the sense that previous accesses are
complete and subsequent accesses hat yet occurred.

10) In accordance with 6.2.4, the lifetimes of objects with automatic storage duration declaraih in
will have ended in the former caseyan where thg would not hae in the latter.

11) The IEC 60559 standard for binary floating-point arithmetic requires certairacrsessible status
flags and control modes. Floating-point operations implicitly set the status flags; modes affect result
vaues of floating-point operations. Implementations that support such floating-point state are
required to rgad changes to it as sidefafts — see anmeF for details. The floating-point
ervironment library<fenv.h> provides a programming facility for indicating when these side
effects matterfreeing the implementations in other cases.

85.1.2.3 Exironment 13

10

11

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

— At program termination, all data written into files shall be identical to the result that
execution of the program according to the abstract semantics wougdadtduced.

— The input and output dynamics of interaetidevices shall tak gace as specified in
7.19.3. Theintent of these requirements is that unbuffered or line-buffered output
appear as soon as possible, to ensure that prompting messages actually appear prior to
a program waiting for input.

What constitutes an interaaidevice is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined by
each implementation.

EXAMPLE 1 An implementation might define a one-to-one correspondence between abstract and actual
semantics: atwvery sequence point, the values of the actual objects would agree with those specified by the
abstract semantics. Theyvord volatile would then be redundant.

Alternatively, an implementation might perform various optimizations within each translation unit, such
that the actual semanticould agree with the abstract semantics only when making function calls across
translation unit boundaries. In such an implementation, at the time of each function entry and function
return where the calling function and the called function are fardiit translation units, the values of all
externally linked objects and of all objects accessible via pointers themild agree with the abstract
semantics. Furthermorat the time of each such function entry tladues of the parameters of the called
function and of all objects accessible via pointers therein would agree with the abstract sernmatitiss.

type of implementation, objects referred to by interrupt service routinestedtby thesignal function

would require explicit specification ofolatile storage, as well as other implementation-defined
restrictions.

EXAMPLE 2 In executing the fragment

char ci, c2;
)
cl=cl+c2

the “integer promotion&require that the abstract machine promote the value of each variatie gze
and then add the twiat s and truncate the sum. Riided the addition of twehar s can be done without
overflow, or with overflow wrapping silently to produce the correct result, the actxadution need only
produce the same result, possibly omitting the promotions.

EXAMPLE 3 Similarly, in the fragment

float f1, f2;

double d;

o

fl=f2*d;
the multiplication may bexecuted using single-precision arithmetic if the implementation can ascertain
that the result wuld be the same as if it wergeeuted using double-precision arithmetic (for exampld, if
were replaced by the const&n® , which has typelouble).

14 Ervironment 85.1.2.3

12

13

14

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

EXAMPLE 4 Implementations employing wide registersvéaio take care to honor appropriate
semantics. ®lues are independent of whetherytteee represented in a register or in memoFpr
example, an implicispilling of a register is not permitted to alter tredue. Also,an explicitstore and load

is required to round to the precision of the storage type. In particatds and assignments are required to
perform their specified coarsion. For the fragment

double d1, d2;

float f;

dl=f= expression

d2 = (float) expression |

the values assigned dd andd2 are required to h& been comerted tofloat

EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations in
precision as well as range. The implementation cannot generally apply the mathematical\essdemti

for addition or multiplication, nor the distribué ule, because of roundadrror, even in the absence of
overflow and underflov. Likewise, implementations cannot generally replace decimal constants in order to
rearrange xpressions. Ihe following fragment, rearrangements suggested by mathematical rules for real
numbers are often not valid (see F.8).

double x, y, z;

* o
Xx=X=*y)*z ; [/l notequivalenttx *= y * z;
z=Xx-y)+y; not equivalentta = x;
Z=X+X*y; / | notequivalentta = x * (1.0 +y);
y =x/5 .0 1 not equivalentty = x * 0 .2;
EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment
int a, b;
I* */

a=a+ 32760+b+5;
the expression statement beésmexactly the same as
a = (((a+32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of (he S2160) is
next added td, and that result is then added3avhich results in the value assignedatdOn a nachine in
which overflows produce an explicit trap and in which the range of values representableirity as
[-32768, +32767], the implementation cannot rewrite this expression as

a = ((a+b)+32765);

since if the values foa andb were, respeoctely, —32754 and -15, the suam + b would produce a trap
while the original expression would not; nor can the expression be rewritten either as

a = ((a+32765) + b);
or
a=(a+ (b + 3 2765));

since the values fa andb might hare been, respeatély, 4 and —8 or —17 and 12. Hower, on a nachine
in which overflow silently generates some value and where pasithd negdive oveflows cancel, the
above expression statement can bevritten by the implementation in grof the abee ways because the
same result will occur.

85.1.2.3 Exironment 15

15

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

EXAMPLE 7 The grouping of an>@ression does not completely determine isluation. In the
following fragment

#include <stdio.h>

int sum;

char *p;

o

sum =sum * 10 - '0' + (*p++ = getchar());

the expression statement is grouped as if it were written as
sum = (((sum * 10) - '0") + ((*(p++)) = (getchar())));

but the actual increment gf can occur at gntime between the previous sequence point and the next
sequence point (thg), and the call t@etchar can occur at anpoint prior to the need of its returned
value.

Forward references: expressions (6.5), type qualifiers (6.7.3), statements (6.8), the
signal function (7.14), files (7.19.3).

16 Ervironment 85.1.2.3

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

5.2 Environmental considerations
5.2.1 Character sets

Two sets of characters and their associated collating sequences shall be defined: the set in
which source files are written (tls®urce character sgtand the set interpreted in the
execution environment (thexecution character s¢t Each set is further divided into a

basic character setwhose contents arewgh by this subclause, and a set of zero or more
locale-specific members (which are not members of the basic character set) called
extended charactersThe combined set is also called tbgended character sefThe

values of the members of thgeeution character set are implementation-defined.

In a character constant or string literal, members of xeeution character set shall be
represented by corresponding members of the source character set emcape
sequencesonsisting of the backslashfollowed by one or more character&.byte with
all bits set to O, called thaull character, shall exist in the basicxecution character set; it
is used to terminate a character string.

Both the basic source and basixeaution character sets shall vieate following
members: the 28ppercase lettersf the Latin alphabet

A B C D EF G H I J KL M
N O P Q R S T UV W X Y Z

the 26lowercase lettersf the Latin alphabet

a b c d e f g h i j k I m
n o p g r s tuv w Xy z

the 10 decimadligits
0 1 2 3 45 6 7 8 9
the following 29 graphic characters

L # % & () Y o+, -
, < =>2 0 v~ _ {1} -

the space characteand control characters representing horizontal tab, vertical tab, and
form feed. The representation of each member of the source xaodtien basic
character sets shall fit in a byt both the source ancecution basic character sets, the
value of each character afterin the abee list of decimal digits shall be one greater than
the value of the pxgous. Insource files, there shall be some way of indicating the end of
each line of text; this International Standard treats such an end-of-line indicator as if it
were a single new-line charactein the basic xecution character set, there shall be
control characters representing alert, backspace, carriage return,varhene If any

other characters are encountered in a source file (except in an ideatiffearacter
constant, a string literal, a header name, a comment, or a preprocessing tokenyvkat is ne

§5.2.1 Emironment 17

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

corverted to a token), the behavior is undefined.

A letter is an uppercase letter or a lowercase letter as defined; abohis International
Standard the term does not include other characters that are letters in other alphabets.

The unversal character name construct provides a way to name other characters.

Forward references: universal character names (6.4.3), character constants (6.4.4.4),
preprocessing direetts (6.10), string literals (6.4.5), comments (6.4.9), string (7.1.1).

5.2.1.1 Tigraph sequences

Before ay other processing takes place, each occurrence of one of thavifglld
sequences of three characters (caltdgraph sequencéd) is replaced with the|
corresponding single character.

27= # 2?)] 271 |
22([27" A 27>)
22/ \ 22< | .~

No other trigraph sequencesst. Each? that does not lggn one of the trigraphs listed
above is ot changed. |

EXAMPLE 1 |
??=define arraycheck(a, b) a??(b??) ??!??! b??(a??)

becomes |
#define arraycheck(a, b) a[b] || b[a]

EXAMPLE 2 The following source line |
printf("Eh???/n");

becomes (after replacement of the trigraph sequemice
printf("Eh?\n");

5.2.1.2 Multibyte characters

The source character set may contain multibyte characters, used to represent members of

the extended character set. Theecaition character set may also contain multibyte

characters, which need notveathe same encoding as for the source character-set.
both character sets, the following shall hold:

— The basic character set shall be present and each character shall be encoded as a
single byte.

— The presence, meaning, and representation wfadditional members is locale-
specific.

12) The trigraph sequences enable the input of characters that are not definedvaridr lBode Set as
described in ISO/IEC 646, which is a subset of tiversbit US ASCII code set.

18 Ervironment 8§5.2.1.2

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

— A multibyte character set may V& a state-dependent encodingvherein each
sequence of multibyte characters begins iniramal shift state and enters other
locale-specificshift stateswhen specific multibyte characters are encountered in the
sequence. Whilen the initial shift state, all single-byte characters retain their usual
interpretation and do not alter the shift state. The interpretation for subsequent bytes
in the sequence is a function of the current shift state.

— A byte with all bits zero shall be interpreted as a null character independent of shift
state. Sucla byte shall not occur as part ofyaother multibyte character |

For source files, the following shall hold:

— An identifiey comment, string literal, character constant, or header name shall begin
and end in the initial shift state.

— An identifief comment, string literal, character constant, or header name shall consist
of a sequence of valid multibyte characters.

5.2.2 Characterdisplay semantics

Theactive positions that location on a display device where thet wbaracter output by
thefputc function would appearThe intent of writing a printing character (as defined
by theisprint function) to a display device is to display a graphic representation of
that character at the aa#i position and then advance the waetiposition to the next
position on the current line. The direction of writing is locale-specificche actve
position is at the final position of a line (if there is one), the behavior of the display device
Is unspecified.

Alphabetic escape sequences representing nongraphic characters inethgore
character set are intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert without changing theegptisition.

\b (backspacgMoves the actve position to the previous position on the current line. If
the actve position is at the initial position of a line, the beioa of the display
device is unspecified.

\f (form feed Moves the actve position to the initial position at the start of the next
logical page.

\n (new line) Moves the actve position to the initial position of the next line.
\r (carriage return) Moves the actve position to the initial position of the current line.

\t (horizontal tal) Moves the actve position to the next horizontal talation position
on the current line. If the age position is at or past the last defined horizontal
takulation position, the behavior of the display device is unspecified.

\v (vertical tah Moves the actve position to the initial position of the next vertical
takulation position. If the acte position is at or past the last defined vertical

8§5.2.2 Erironment 19

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

tabulation position, the behavior of the display device is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value
which can be stored in a singthar object. Theexternal representations in a text file

need not be identical to the internal representations, and are outside the scope of this
International Standard.

Forward references: theisprint ~ function (7.4.1.8), théputc function (7.19.7.3).

5.2.3 Signalsand interrupts

Functions shall be implemented such thay timay be interrupted at grime by a signal,

or may be called by a signal handier both, with no alteration to earligout still actve,
invocations’ control flav (after the interruption), function return values, or objects with
automatic storage duratiomAll such objects shall be maintained outside finection
image (the instructions that compose theeeutable representation of a function) on a
per-invocation basis.

5.2.4 Environmental limits

Both the translation andxecution ewironments constrain the implementation of

language translators and librarie3he following summarizes the language-related
ervironmental limits on a conforming implementation; the library-related limits are
discussed in clause 7.

5.2.4.1 Tanslation limits

The implementation shall be able to translate axstuge at least one program that
contains at least one instance wérg one of the following limits->)

— 127 nesting leels of blocks
— 63 nesting leels of conditional inclusion

— 12 pointer, array, and function declarators (in gncombinations) modifying an
arithmetic, structure, union, or incomplete type in a declaration

— 63 nesting leels of parenthesized declarators within a full declarator
— 63 nesting leels of parenthesized expressions within a full expression

— 63 dggnificant initial characters in an internal identifier or a macro name (each
universal character name or extended source character is considered a single
character)

— 31 dgnificant initial characters in an external identifier (eaclhersal character name
specifying a short identifier of 0000FFFF or less is considered 6 characters, each

13) Implementations should@d imposing fixed translation limits wheves possible.

20 Ervironment 85.2.4.1

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

universal character name specifying a short identifier of 00010000 or more is
considered 10 characters, and each extended source character is considered the same
number of characters as the correspondingersal character name, if af)

— 4095 external identifiers in one translation unit

— 511 identifiers with block scope declared in one block

— 4095 macro identifiers simultaneously defined in one preprocessing translation unit
— 127 parameters in one function definition

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro/atation

— 4095 characters in a logical source line

— 4095 characters in a character string literal or wide string literal (after concatenation)
— 65535 bytes in an object (in a hosted environment only)

— 15 nesting leels for#include d files

— 1023 case labels for aswitch statement (excluding those foryamestedswitch
statements)

— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levds of nested structure or union definitions in a single struct-declaration-list
5.2.4.2 Numerical limits

An implementation is required to document all the limits specified in this subclause,
which are specified in the headetsnits.h> and<float.h> . Additional limits are
specified incstdint.h>

Forward references: integer typesstdint.h> (7.18).
5.2.4.2.1 Sizesf integer types<limits.h>

The values gien below shall be replaced by constantpeessions suitable for use#if
preprocessing direotts. Morewer, except for CHAR_BIT and MB_LEN_MAXthe
following shall be replaced by expressions thateh#e same type as awuld an
expression that is an object of the corresponding typeectaa according to the integer
promotions. Theirmplementation-defined values shall be equal or greater in magnitude

14) See “future language direction§5.11.3).

8§5.2.4.2.1 Evironment 21

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

(absolute value) to those shown, with the same sign.

— number of bits for smallest object that is not a bit-field (byte)
CHAR_BIT 8

— minimum value for an object of tymegned char
SCHAR_MIN 127 11 -(2"-1)

— maximum value for an object of tysggned char
SCHAR_MAX +127 /I 2'-1

— maximum value for an object of typmsigned char
UCHAR_MAX 255 /| 28-1

— minimum value for an object of typshar
CHAR_MIN see below

— maximum value for an object of typhar
CHAR_MAX see below

— maximum number of bytes in a multibyte charadier ary supported locale
MB_LEN_MAX 1

— minimum value for an object of tymhort int
SHRT_MIN -32767 11 (2 -1)

— maximum value for an object of tyshort int
SHRT_MAX +32767 /| 2¥°-1

— maximum value for an object of typmsigned short int
USHRT_MAX 65535 /| 2%-1

— minimum value for an object of typet
INT_MIN -32767 1/ -(2*-1)

— maximum value for an object of tyet
INT_MAX +32767 /I 2P -1

— maximum value for an object of typmsigned int
UINT_MAX 65535 // 2°-1

— minimum value for an object of tygeng int
LONG_MIN 2147483647 /I —(23'1-1)

— maximum value for an object of typeng int
LONG_MAX +2147483647 /| 2'-1

— maximum value for an object of typmsigned long int
ULONG_MAX 4294967295 /| 2%-1

22 Ervironment 8§5.2.4.2.1

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

— minimum value for an object of tygeng long int
LLONG_MIN -9223372036854775807 /I —(2°%-1)

— maximum value for an object of typeng long int
LLONG_MAX +9223372036854775807 /I 2%-1

— maximum value for an object of typmsigned long long int
ULLONG_MAX 18446744073709551615 // 2°4-1

If the value of an object of typehar is treated as a signed integer when used in an
expression, the value &@HAR_MINshall be the same as that ®CHAR_MINand the
value of CHAR_MAXhall be the same as thatSCHAR_MAXOtherwise, the value of
CHAR_MINshall be 0 and the value &@HAR_MAXshall be the same as that of
UCHAR_MA¥®) The valueUCHAR_MAXhall equal $#AR-BIT - 1.

Forward references: representations of types (6.2.6), conditional inclusion (6.10.1).
5.2.4.2.2 Characteristicof floating types<float.h>

The characteristics of floating types are defined in terms of a model that describes a
representation of floating-point numbers and values that provide information about an
implementatiors floating-point arithmeti¢® The following parameters are used to
define the model for each floating-point type:

S sign &1)
b base or radix of exponent representation (an integer > 1)
e exponent (an integer between a minimagy, and a maximune,,»,)

p precision (the number of babadigits in the significand)
fi nonngaive integers less thah (the significand digits)

A floating-point numbe(Xx) is defined by the following model:
p
x = sb’ Z fkb_k, €min = € = €nax
k=1

In addition to normalized floating-point numbefs ¢ O if x # 0), floating types may be

able to contain other kinds of floating-point numbers, such as subnormal floating-point
numbers X#0, e=e¢e,, f1=0) and unnormalized floating-point numbers #0,

e> e, f1 =0), and alues that are not floating-point numbers, such as infinities and
NaNs. A NaN is an encoding signifying Not-a-NumbeA quiet NaN propagates
through almost\eery arithmetic operation without raising a floating-point exception; a
signaling NaN generally raises a floating-pointxaeption when occurring as an

15) See 6.2.5.

16) The floating-point model is intended to clarify the description of each floating-point characteristic and
does not require the floating-point arithmetic of the implementation to be identical.

8§5.2.4.2.2 Evironment 23

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

arithmetic operand”)

An implementation may ge zro and non-numericalues (such as infinities and NaNs)| a
sign or may leee them unsigned. Whever such values are unsigned,yarequirement |

in this International Standard to retriethe sign shall produce an unspecified sign, and
ary requirement to set the sign shall be ignored.

The accurag of the floating-point operations-(-, *, /) and of the library functions in
<math.h> and <complex.h> that return floating-point results is implementation-
defined, as is the accuyacof the cowersion between floating-point internal
representations and string representations performed by the library functiohs in
<stdio.h> |, <stdlib.h> |, and <wchar.h> . The implementation may state that the
accurag is unknown.

All integer values in thefloat.h> header except FLT_ROUNDSshall be constant
expressions suitable for use #if preprocessing dirests; all floating values shall be
constant gpressions. AllexceptDECIMAL_DIG FLT_EVAL _METHODFLT RADIX,
andFLT_ROUNDShave sparate names for all three floating-point types. The floating-
point model representation is pided for all values exceLT_EVAL_METHOLRnd
FLT_ROUNDS

The rounding mode for floating-point addition is characterized by the implementation-
defined value oFLT_ROUNDS®

-1 indeterminable
0 toward zero
1 tonearest
2 toward positive infinity
3 toward negdive infinity

All other values for FLT_ROUNDScharacterize implementation-defined rounding
behavior.

Except for assignment and cast (which reendl extra range and precision), thalves |
of operations with floating operands an@lues subject to the usual arithmetic
cornversions and of floating constants avaleated to a format whose range and precision
may be greater than required by the type. The useahfation formats is characterized
by the implementation-defined valuerfT EVAL_METHOD?

17) IEC 60559:1989pecifies quiet and signaling NaN&or implementations that do not support
IEC 60559:1989the terms quiet NaN and signaling NaN are intended to apply to encodings with
similar behavior.

18) Ewluation ofFLT_ROUNDSo rrectly reflects anexecution-time change of rounding mode through
the functionfesetround in <fenv.h>

24 Ervironment 8§5.2.4.2.2

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

-1 indeterminable;
0 evduate all operations and constants just to the range and precision of the
type;
1 evduate operations and constants of tyffmat and double to the

range and precision of thdouble type, eauate long double
operations and constants to the range and precision infpelouble

type;

2 evduate all operations and constants to the range and precision of the
long double type.

All other negative values forFLT_EVAL_METHOIRharacterize implementation-defined
behavior.

The values gen in the following list shall be replaced by constampressions with
implementation-definedalues that are greater or equal in magnitude (absolute value) to
those shown, with the same sign:

— radix of exponent representatidn,
FLT_RADIX 2

— number of basé-LT_RADIX digits in the floating-point significang,

FLT _MANT _DIG
DBL_MANT _DIG
LDBL_MANT DIG

— number of decimal digitsn, such that ap floating-point number in the widest
supported floating type witlp,,.. radix b digits can be rounded to a floating-point
number withn decimal digits and back again without change to the value,

U prmax 0950 b if bis a power of 10
Bﬂ- + Prmax 109, b0 otherwise
DECIMAL_DIG 10

— number of decimal digits], such that an floating-point number witly decimal digits
can be rounded into a floating-point number wpthadix b digits and back again
without change to thg decimal digits,

19) The eauation method determinevauation formats of x¥pressions imolving all floating types, not
just real types.For example, if FLT_EVAL_METHODs 1, then the product of twdloat
_Complex operands is represented in ttmuble _Complex format, and its parts areauated to
double .

8§5.2.4.2.2 Evironment 25

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Uplog,gb if bis a power of 10
n(p — 1) logy, b otherwise
FLT _DIG 6
DBL_DIG 10
LDBL_DIG 10

— minimum naaive integer such thaELT _RADIX raised to one less than thaines is
a normalized floating-point numbeg,,;,

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

— minimum ne@adive integer such that 10 raised to thatwmw is in the range of
normalized floating-point number%og10 bemi"‘lg

FLT _MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37

— maximum integer such th<_RADIX raised to one less than that power is a
representable finite floating-point numbey,,

FLT _MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

— maximum intger such that 10 raised to that power is in the range of representable
finite floating-point numbersiog, ,((1 — b™P)b® =)

FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

10 The values gien in the following list shall be replaced by constarpressions with
implementation-defined values that are greater than or equal to those shown:

— maximum representable finite floating-point numlpgr b™P)b%max

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

11 The values gien in the following list shall be replaced by constant expressions with
implementation-defined (posil) values that are less than or equal to those shown:

— the difference between 1 and the leadug greater than 1 that is representable in the
given floating point typeb* P
26 Ervironment 8§5.2.4.2.2

12

13

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

— minimum normalized posite floating-point numbeiy®min~
FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37

Recommended practice

Corversion from (at leastfouble to decimal withDECIMAL_DIG digits and back

should be the identity function.

EXAMPLE 1 The following describes an artificial floating-point representation that meets the minimum

requirements of this International Standard, and the appropriate valueslaatsh>

float

6
x=s516"5 f,16% -31<e<+32
k=1

FLT_RADIX 16
FLT_MANT_DIG 6
FLT_EPSILON 9.53674316E-07F
FLT DIG 6
FLT_MIN_EXP -31
FLT_MIN 2.93873588E-39F
FLT_MIN_10_EXP -38
FLT_MAX_EXP +32
FLT_MAX 3.40282347E+38F
FLT_MAX_10_EXP +38

header for type

14 EXAMPLE 2 The following describes floating-point representations that also meet the requirements for
single-precision and double-precision normalized numbers in IEC 685&8 the appropriate values in a

<float.h> header for typefloat anddouble :

24
X; =s28 S f,2% -125<e<+128
k=1

53
Xg=s2°S f27%, -1021<e<+1024
k=1

FLT_RADIX 2

DECIMAL_DIG 17

FLT_MANT_DIG 24

FLT_EPSILON 1.19209290E-07F // decimal constant
FLT_EPSILON 0X1P-23F // hex constant

20) The floating-point model in that standard sums powetsfadm zero, so the values of the exponent

limits are one less than shown here.

8§5.2.4.2.2 Ewironment

27

ISO/IEC 9899:TC3

FLT DIG
FLT_MIN_EXP
FLT_MIN

FLT_MIN
FLT_MIN_10_EXP
FLT_MAX_EXP
FLT_MAX
FLT_MAX
FLT_MAX_10_EXP
DBL_MANT_DIG

DBL_EPSILON 2.2204460492503131E-16 //

DBL_EPSILON
DBL_DIG
DBL_MIN_EXP
DBL_MIN
DBL_MIN
DBL_MIN_10_EXP
DBL_MAX_EXP
DBL_MAX
DBL_MAX
DBL_MAX_10_EXP

2.2250738585072014E-308 //

1.7976931348623157E+308 //
OX1.fifffffffffffP 1023 //

Committee Draft — Septermber 7, 2007

6
-125
1.17549435E-38F // decimal constant
0X1P-126F // hex constant
-37
+128
3.40282347E+38F // decimal constant
OX1.fffffeP127F // hex constant
+38
53
decimal constant
O0X1P-52 // hex constant
15
-1021

decimal constant
0X1P-1022 /I hex constant
-307

+1024

decimal constant
hex constant

+308

WG14/N1256

If a type wider thandouble were supported, theDECIMAL_DIG would be greater than 17For

example, if the widest type were to use the minimal-width IEC 60559 double-extended format (64 bits of

precision), the®ECIMAL_DIGwould be 21.

Forward references:
<complex.h>

(7.24), floating-point environmentfenv.h>

(7.20), input/outpugstdio.h>

28

conditional

inclusion (6.10.1),

(7.19), mathematicsmath.h> (7.12).

Ervironment

comple arithmetic
(7.3), extended multibyte and wide character utilittegchar.h>
(7.6), general utilities<stdlib.h>

§5.2.4.2.2

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

6. Language
6.1 Notation

In the syntax notation used in this clause, syntacticgodats (nonterminals) are
indicated byitalic type and literal words and character set members (terminalbplaly
type . A colon () following a nonterminal introduces its definition. Altermati
definitions are listed on separate lines, except when prefaced bytittie Yone of . An
optional symbol is indicated by the subscript “opt”, so that

{ expressioRp: }
indicates an optional expression enclosed in braces.

When syntactic catpries are referred to in the main text,ytteee not italicized and
words are separated by spaces instead of hyphens.

A summary of the language syntax ise@i in annex A.
6.2 Concepts
6.2.1 Scopesf identifiers

An identifier can denote an object; a function; a tag or a member of a structure, union, or
enumeration; a typedef name; a label name; a macro name; or a macro paradheeter
same identifier can denote different entities at different points in the progranember

of an enumeration is called aenumeration constantMacro names and macro
parameters are not considered further here, because prior to the semantic phase of
program translation groccurrences of macro names in the source file are replaced by the
preprocessing token sequences that constitute their macro definitions.

For each different entity that an identifier designates, the identifiesilsle (i.e., can be
used) only within a ggon of program text called itscope Different entities designated

by the same identifier eitherveadfferent scopes, or are in different name spaces. There
are four kinds of scopes: function, file, block, and function prototype.fu@tion
prototypeis a declaration of a function that declares the types of its parameters.)

A label name is the only kind of identifier that lasction scope It can be used (in a
goto statement) aywhere in the function in which it appears, and is declared implicitly
by its syntactic appearance (followed by and a statement).

Every other identifier has scope determined by the placement of its declaration (in a
declarator or type specifier)f the declarator or type specifier that declares the identifier
appears outside of warblock or list of parameters, the identifier hide scope which
terminates at the end of the translation unit. If the declarator or type specifier that
declares the identifier appears inside a block or within the list of parameter declarations in
a function definition, the identifier hddodk scope which terminates at the end of the
associated block. If the declarator or type specifier that declares the identifier appears

86.2.1 Language 29

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

within the list of parameter declarations in a function prototype (not part of a function
definition), the identifier haiinction prototype scop&vhich terminates at the end of the
function declarator If an identifier designates twdifferent entities in the same name
space, the scopes mightedap. If so, the scope of one entity (timmer scopgwill be a

strict subset of the scope of the other entity ¢hier scopg Within the inner scope, the
identifier designates the entity declared in the inner scope; the entity declared in the outer
scope ihidden(and not visible) within the inner scope.

Unless eplicitly stated otherwise, where this International Standard uses the term
“ identifier” to refer to some entity (as opposed to the syntactic construct), it refers to the
entity in the releant name space whose declaration is visible at the point the identifier
occurs.

Two identifiers hae the same scopé and only if their scopes terminate at the same
point.

Structure, union, and enumeration tageengope that begins just after the appearance of
the tag in a type specifier that declares the Earh enumeration constant has scope that
begins just after the appearance of its defining enumerator in an enumerator list. Any
other identifier has scope that begins just after the completion of its declarator.

Forward references: declarations (6.7), function calls (6.5.2.2), function definitions
(6.9.1), identifiers (6.4.2), name spaces of identifiers (6.2.3), macro replacement (6.10.3),
source file inclusion (6.10.2), statements (6.8).

6.2.2 Linkagesof identifiers

An identifier declared in different scopes or in the same scope more than once can be
made to refer to the same object or function by a process tiakede??) There are
three kinds of linkage: external, internal, and none.

In the set of translation units and libraries that constitutes an entire program, each
declaration of a particular identifier witedernal linkage denotes the same object or
function. Wthin one translation unit, each declaration of an identifier witkrnal
linkage denotes the same object or function. Each declaration of an identifienavith
linkage denotes a unique entity.

If the declaration of a file scope identifier for an object or a function contains the storage-
class specifiestatic , the identifier has internal linkagé.

For an identifier declared with the storage-class spedifieern in a scope in which a

21) There is no linkage between different identifiers.

22) A function declaration can contain the storage-class spestifigc only if it is at file scope; see
6.7.1.

30 Language 86.2.2

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

prior declaration of that identifier is visibfé)if the prior declaration specifies internal or
external linkage, the linkage of the identifier at the later declaration is the same as the
linkage specified at the prior declaratidiino prior declaration is visible, or if the prior
declaration specifies no linkage, then the identifier has external linkage.

If the declaration of an identifier for a function has no storage-class spetsfierkage

Is determined exactly as if it were declared with the storage-class spexiéen . If

the declaration of an identifier for an object has file scope and no storage-class specifier,
its linkage is external.

The following identifiers hae ro linkage: an identifier declared to be anything other than
an object or a function; an identifier declared to be a function parameter; a block scope
identifier for an object declared without the storage-class speitiem

If, within a translation unit, the same identifier appears with both internal and external
linkage, the behavior is undefined.

Forward references: declarations (6.7), xpressions (6.5), external definitions (6.9),
statements (6.8).

6.2.3 Namespaces of identifiers

If more than one declaration of a particular identifier is visible g @oint in a
translation unit, the syntactic context disambiguates uses that refefeterdifentities.
Thus, there are separatame spacefr various categories of identifiers, as follows:

— label namegdisambiguated by the syntax of the label declaration and use);

— thetagsof structures, unions, and enumerations (disambiguated by followirf§ any
of the lkeywordsstruct , union , or enum);

— the membersof structures or unions; each structure or union has a separate name
space for its members (disambiguated by the type of the expression used to access the
member via the or-> operator);

— all other identifiers, calledrdinary identifiers(declared in ordinary declarators or as
enumeration constants).

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1),
structure and union specifiers (6.7.2.1), structure and union members (6.5.2.3), tags
(6.7.2.3), thgoto statement (6.8.6.1).

23) As specified in 6.2.1, the later declaration might hide the prior declaration.

24) There is only one name space for tags ¢hough three are possible.

86.2.3 Language 31

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.2.4 Storagedurations of objects

An object has atorage diration that determines its lifetime. There are three storage
durations: static, automatic, and allocated. Allocated storage is described in 7.20.3.

The lifetime of an object is the portion of programeeution during which storage is
guaranteed to be reserved for it. An object exists, has a constant dbzesisretains

its last-stored value throughout its lifetiff. If an object is referred to outside of its
lifetime, the behavior is undefined. The value of a pointer becomes indeterminate when
the object it points to reaches the end of its lifetime.

An object whose identifier is declared with external or internal linkage, or with the
storage-class specifistatic ~ has static stoage diration. Its lifetime is the entire
execution of the program and its stored value is initialized only once, prior to program
startup.

An object whose identifier is declared with no linkage and without the storage-class
specifierstatic hasautomatic staage diration.

For such an object that does notvieaa \ariable length array type, its lifetime extends
from entry into the block with which it is associated untgaaition of that block ends in

ary way. (Entering an enclosed block or calling a function suspendsjdes not end,
execution of the current block.) If the block is entered resehgj a rew instance of the
object is created each time. The initidlve of the object is indeterminate. If an
initialization is specified for the object, it is performed each time the declaration is
reached in thexecution of the block; otherwise, the value becomes indeterminate each
time the declaration is reached.

For such an object that doesveaa \ariable length array type, its lifetime extends from
the declaration of the object untikeeution of the program leas the scope of the
declaratior?”) If the scope is entered recwei, a rew instance of the object is created
each time. The initial value of the object is indeterminate.

Forward references: statements (6.8), function calls (6.5.2.2), declarators (6.7.5), array
declarators (6.7.5.2), initialization (6.7.8).

25) The term “constant addressheans that te pointers to the object constructed at possibly different
times will compare equal. The address may be different duriogifferent executions of the same
program.

26) In the case of a volatile object, the last store need not be explicit in the program.

27) Leaing the innermost block containing the declaration, or jumping to a point in that block or an
embedded block prior to the declarationyksathe scope of the declaration.

32 Language 86.2.4

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

6.2.5 Types

The meaning of aalue stored in an object or returned by a function is determined by the
type of the expression used to access it. (An identifier declared to be an object is the
simplest such expression; the type is specified in the declaration of the idenTy@es

are partitioned intmbject typegtypes that fully describe objectsiynction typegtypes

that describe functions), andcomplete typegtypes that describe objects but lack
information needed to determine their sizes).

An object declared as typ®&ool is large enough to store the values 0 and 1.

An object declared as typehar is large enough to store yammember of the basic
execution character setlf a member of the basicxecution character set is stored in a
char object, its value is guaranteed to be ngyatiee. If any ather character is stored in
achar object, the resulting value is implementation-defined but shall be within the range
of values that can be represented in that type.

There are fivestandad dgned intge types designated asigned char , short

int , int , long int , and long long int . (These and other types may be
designated in seral additional ways, as described in 6.7.2.) There may also be
implementation-define@xended signed inger types?® The standard and extended
signed integer types are collegly calledsigned intger types®®

An object declared as tymegned char occupies the same amount of storage as a
“plain” char object. A*“plain” int object has the natural size suggested by the
architecture of thexecution environment (lge enough to contain yawalue in the range
INT_MIN to INT_MAXas defined in the headelimits.h>).

For each of the signed inger types, there is a corresponding (but different) unsigned
integer type (designated with theeyevord unsigned) that uses the same amount of
storage (including sign information) and has the same alignment requirements. The type
_Bool and the unsigned integer types that correspond to the standard signed integer
types are thestandad unsigned intger types The unsigned ingger types that
correspond to the extended signed integer types aexttreded unsigned irger types

The s?f(z)a)ndard and extended unsigned integer types are gellectilledunsigned intger

types

28) Implementation-defined eywords shall hee the form of an identifier resesd for ay use as
described in 7.1.3.

29) Therefore, ap statement in this Standard about signed integer types also applies to the extended
signed integer types.

30) Therefore, ay statement in this Standard about unsigned integer types also applies to the extended
unsigned integer types.

86.2.5 Language 33

10

11

12

13

14

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

The standard signed integer types and standard unsigned integer types argetpollecti
called thestandad integger types the extended signed imer types and extended
unsigned integer types are collgely called theextended intger types

For any two integer types with the same signedness and different integeersmm rank
(see 6.3.1.1), the range of values of the type with smaller integeersimm rank is a
subrange of the values of the other type.

The range of nonmgtive values of a signed irmger type is a subrange of the
corresponding unsigned integer type, and the representation of the same value in each
type is the samé? A computation imolving unsigned operands canvee overflow,
because a result that cannot be represented by the resulting unsigned integer type is
reduced modulo the number that is one greater than thestavalue that can be
represented by the resulting type.

There are threereal floating types designated asfloat , double , and long
double .32 The set of alues of the typdloat is a subset of the set of values of the
typedouble ;the set of alues of the typedouble is a subset of the set of values of the
typelong double

There are threecomple types designated asfloat _Complex , double
_Complex , and long double _Complex 33 The real floating and compleypes
are collectyvely called thefloating types

For each floating type there is@rresponding real typewhich is alays a real floating
type. For real floating types, it is the same tygéxr complex types, it is the type gen
by deleting the &word _Complex from the type name.

Each comple type has the same representation and alignment requirements as an array
type containing exactly twdements of the corresponding real type; the first element is
equal to the real part, and the second element to the imaginary part, of the complex
number.

The typechar , the signed and unsigned integer types, and the floating types are
collectively called thebasic typesEven if the implementation defines &wor more basic
types to hae the same representation, freee nevertheless different type¥?

31) The same representation and alignment requirements are meant to imply interchangeability as
arguments to functions, return values from functions, and members of unions.

32) See “future language directioh§6.11.1).
33) A specification for imaginary types is in informagiaanex G.

34) An implementation may define wekeywords that provide alternag ways to designate a basic (or
ary other) type; this does not violate the requirement that all basic types be different.
Implementation-defined eywords shall hae the form of an identifier resexd for ary use as
described in 7.1.3.

34 Language 86.2.5

15

16

17

18

19

20

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

The three typeshar , signed char , and unsigned char are collectiely called
the character types The implementation shall definehar to have the same range,
representation, and behavior as eiigned char or unsigned char 3%

An enumerationcomprises a set of named integer constaalties. Each distinct
enumeration constitutes a differamumerated type

The typechar , the signed and unsigned ig&r types, and the enumerated types are
collectively calledinteger types The integer and real floating types are colestyicalled
real types

Integer and floating types are colledy called arithmetic typesEach arithmetic type
belongs to on¢ype domainthereal type domaircomprises the real types, themplex
type domaircomprises the comptaypes.

Thevoid type comprises an empty set of values; it is an incomplete type that cannot be
completed.

Any number of derived typescan be constructed from the object, function, and
incomplete types, as follows:

— An array typedescribes a contiguously allocated nonempty set of objects with a
particular member object type, called thdement typ€® Array types are
characterized by their element type and by the number of elements in thefaray
array type is said to be desd from its element type, and if its element typ@& jghe
array type is sometimes called “array©f. The construction of an array type from
an element type is called “array type detion”.

— A structue typedescribes a sequentially allocated nonempty set of member objects
(and, in certain circumstances, an incomplete array), each of which has an optionally
specified name and possibly distinct type.

— A union typedescribes anwrlapping nonempty set of member objects, each of
which has an optionally specified name and possibly distinct type.

— A function typedescribes a function with specified return tygefunction type is
characterized by its return type and the number and types of its parameters. A
function type is said to be deed from its return type, and if its return typeTisthe
function type is sometimes called “function returniig. The construction of a
function type from a return type is called “function type dation”.

35) CHAR_MIN defined in<limits.h> , Will have ame of the values 0 SCHAR_MINand this can be
used to distinguish the twoptions. Irrespecte d the choice madehar is a separate type from the
other two and is not compatible with either.

36) Since object types do not include incomplete types, an array of incomplete type cannot be constructed.

86.2.5 Language 35

21

22

23

24

25

26

27

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

— A pointer typemay be dexied from a function type, an object type, or an incomplete
type, called thereferenced typeA pointer type describes an object whose value
provides a reference to an entity of the referenced typpointer type dexied from
the referenced typ& is sometimes called “pointer t8”. The construction of a
pointer type from a referenced type is called “pointer typeveion”.

These methods of constructing ded types can be applied recudy.

Arithmetic types and pointer types are coliedli called scalar types Array and
structure types are colleatly calledaggegate types”)

An array type of unknown size is an incomplete type. It is completed, for an identifier of
that type, by specifying the size in a later declaration (with internatternal linkage).

A structure or union type of unknown content (as described in 6.7.2.3) is an incomplete
type. Itis completed, for all declarations of that type, by declaring the same structure or
union tag with its defining content later in the same scope.

A type hasknown constant sizié the type is not incomplete and is notaiable length |
array type. |

Array, function, and pointer types are collgely called derived declarator typesA |
declamator type derivatiorfrom a typeT is the construction of a deed declarator type
from T by the application of an array-type, a function-type, or a pointer-typeatieni to
T.

A type is characterized by itgpe categorywhich is either the outermost dation of a
derived type (as noted abe in the construction of deséd types), or the type itself if the
type consists of no derd types.

Any type so &r mentioned is amnqualified type Each unqualified type has v&eal
qualified versionsof its type3® corresponding to the combinations of one, two, or all
three of theconst , volatile , andrestrict qualifiers. Thegualified or unqualified
versions of a type are distinct types that belong to the same type categoryartdeha
same representation and alignment requireniéhta.derived type is not qualified by the
qualifiers (if any) of the type from which it is dead.

A pointer tovoid shall hae the same representation and alignment requirements as a
pointer to a character tyg®. Similarly, pointers to qualified or unqualified versions of
compatible types shall i@ the same representation and alignment requirements. All

37) Note that aggmgete type does not include union type because an object with union type can only
contain one member at a time.

38) See 6.7.3 garding qualified array and function types.

39) The same representation and alignment requirements are meant to imply interchangeability as
arguments to functions, return values from functions, and members of unions.

36 Language 86.2.5

28

29

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

pointers to structure types shalvkahe same representation and alignment requirements
as each otherAll pointers to union types shall V& the same representation and
alignment requirements as each othBointers to other types need notvhahe same
representation or alignment requirements.

EXAMPLE 1 The type designated adldat* " has type “pointer tofloat ”. Its type category is
pointer not a floating type. The const-qualified version of this type is designatefioas*¢onst

whereas the type designated asristfloat* " is ot a qualified type — its type is “pointer to const-
qualifiedfloat " and is a pointer to a qualified type.

EXAMPLE 2 The type designated asttucttag(*[5])(float) " has type ‘array of pointer to
function returningstructtag " . The array has length fivand the function has a single parameter of type
float . Its type category is array.

Forward references: compatible type and composite type (6.2.7), declarations (6.7).
6.2.6 Repesentations of types
6.2.6.1 General

The representations of all types are unspecified except as stated in this subclause.

Except for bit-fields, objects are composed of contiguous sequences of one or more bytes,
the number order, and encoding of which are eitherxmicitly specified or
implementation-defined.

Values stored in unsigned bit-fields and objects of typsigned char shall be
represented using a pure binary notaff8n.

Values stored in non-bit-field objects ofyanther object type consist afx CHAR_BIT

bits, wheren is the size of an object of that type, in byt&e value may be copied into

an object of typeinsigned char [n] (e.g., bymemcpy); the resulting set of bytes is

called theobject representationf the \alue. \alues stored in bit-fields consist mfbits,

wherem is the size specified for the bit-field.he object representation is the setof

bits the bit-field comprises in the addressable storage unit holdidgvd.values (other

than NaNs) with the same object representation compare equal, but values that compare
equal may hee dfferent object representations.

Certain object representations need not represent a value of the objedf thipestored

value of an object has such a representation and is read by an Ivalue expression that does
not hare character type, the behavior is undefindddsuch a representation is produced

by a side déct that modifies all or gnpart of the object by an Ivalue expression that
does not hee character type, the behavior is undefiffi®dSuch a representation is called

40) A positional representation for igers that uses the binary digits O and 1, in which the values
represented by successilits are additie, begn with 1, and are multiplied by successiintegral
powers of 2, except perhaps the bit with the highest posiijadapted from theéAmerican National
Dictionary for Information Processing Systein#\ byte contain€CHAR_BIT bits, and the &lues of
typeunsigned char range from 0 t@“HARBIT — 1.

86.2.6.1 Language 37

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

atrap representation

When a walue is stored in an object of structure or union type, including in a member
object, the bytes of the object representation that correspond tmadding bytes take
unspecified value®) The walue of a structure or union object isvee a tap |
representation,ven though the alue of a member of the structure or union object may be
a frap representation.

When a walue is stored in a member of an object of union type, the bytes of the object
representation that do not correspond to that membtetdocorrespond to other membelrs
take unspecified values.

Where an operator is applied to alue that has more than one object representation,
which object representation is used shall not affect the value of the*féswthere a

value is stored in an object using a type that has more than one object representation for
that value, it is unspecified which representation is us#da ltrap representation shall

not be generated.

Forward references: declarations (6.7), expressions (6.5alhes, arrays, and function
designators (6.3.2.1).

6.2.6.2 Integer types

For unsigned integer types other thamsigned char , the bits of the object
representation shall be divided intootgroups: value bits and padding bits (there need
not be ag of the latter). If there aré&l value bits, each bit shall represent a different
pover of 2 between 1 and"Z', so hat objects of that type shall be capable of
representing values from 0 td'2 1 using a pure binary representation; this shall be
known as the value representation. The values pfadding bits are unspecifié®.

For signed integer types, the bits of the object representation shalidedlinto three
groups: value bits, padding bits, and the sign Bhere need not be wnmadding bits;

41) Thus, an automatic variable can be initialized to a trap representation without causing undefined
behavior but the value of the variable cannot be used until a proper value is stored in it.

42) Thus, for example, structure assignment need ngtagppadding bits. |

43) It is possible for objects andy with the same effeate type T to have the same value when there
accessed as objects of typebut to hae dfferent values in other contis. In particularif == is
defined for typeTl, thenx == y does not imply thatnemcmp(&x, &y, sizeof (T)) ==
Furthermorex == y does not necessarily imply thatandy have the same value; other operations
on values of typd may distinguish between them.

44) Some combinations of padding bits might generate trap representationsarfgle, if one padding
bit is a parity bit. Rgadless, no arithmetic operation on valid values can generate a trap
representation other than as part of mreptional condition such as awerflow, and this cannot occur
with unsigned typesAll other combinations of padding bits are altevatibject representations of
the value specified by the value bits.

38 Language 86.2.6.2

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

there shall be exactly one sign bit. Each bit that is a value bit shallffeasame alue as

the same bit in the object representation of the corresponding unsigned type (if there are
M value bits in the signed type amdlin the unsigned type, theWl < N). If the sign bit

is zero, it shall not affect the resultinglwe. Ifthe sign bit is one, the value shall be
modified in one of the following ways:

— the corresponding value with sign bit O igaed Sign and magnitude
— the sign bit has the valug2") (two’s complement
— the sign bit has the valug2™ — 1) (ones’ complemejt |

Which of these applies is implementation-defined, as is whethealie with sign bit 1

and all value bits zero (for the first two), or with sign bit and alle bits 1 (for ones’|
complement), is a trap representation or a nornadliev Inthe case of sign and
magnitude and ones’ complement, if this representation is a noaiua ¥ is called a
negative zero

If the implementation supportsgative z2ros, thg shall be generated only by:
— the&, | , ", ~, <<, and >> operators with arguments that produce such a value;

— the+, -, *,/, and %operators where one argument is gdige z2ro and the result is
zero;

— compound assignment operators based on theeabses.

It is unspecified whether these cases actually generatgaavaezro or a normal zero,
and whether a mgtive z2ro becomes a normal zero when stored in an object.

If the implementation does not supporgaeve zros, the behavior of th& | , *, ~, <<,
and>> operators with arguments that would produce such a value is undefined.

The values of anpadding bits are unspecifiéd).A valid (non-trap) object representation

of a signed intger type where the sign bit is zero is a valid object representation of the
corresponding unsigned type, and shall represent the saloee Jor ary integer type, |

the object representation where all the bits are zero shall be a representatiorabfethie v
zero in that type.

The precision of an intger type is the number of bits it uses to represent values,
excluding aly sign and padding bits. Theidth of an integer type is the same but
including aly sign bit; thus for unsigned integer types th® tvalues are the same, while

45) Some combinations of padding bits might generate trap representations, for example, if one padding
bit is a parity bit. Regadless, no arithmetic operation on validluwes can generate a trap
representation other than as part of aweptional condition such as arvedlow. All other
combinations of padding bits are altermatthject representations of the value specified by the value
bits.

86.2.6.2 Language 39

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

for signed integer types the width is one greater than the precision.

6.2.7 Compatibletype and composite type

Two types hae compatible typeif their types are the same. Additional rules for
determining whether tavtypes are compatible are described in 6.7.2 for type specifiers,

in 6.7.3 for type qualifiers, and in 6.7.5 for declarafStsMoreover, two gructure,

union, or enumerated types declared in separate translation units are compatible if their
tags and members satisfy the following requirements: If one is declared with a tag, the
other shall be declared with the same tHgoth are complete types, then the following
additional requirements apply: there shall be a one-to-one correspondence between their
members such that each pair of corresponding members are declared with compatible
types, and such that if one member of a corresponding pair is declared with a name, the
other member is declared with the same narRer two dructures, corresponding
members shall be declared in the same orBer two gructures or unions, corresponding
bit-fields shall hee the same widthsFor two enumerations, corresponding members
shall hae the same values.

All declarations that refer to the same object or function shak lampatible type;
otherwise, the behavior is undefined.

A composite typean be constructed from datypes that are compatible; it is a type that
Is compatible with both of the twypes and satisfies the following conditions:

— If one type is an array of kmm constant size, the composite type is an array of that
size; otherwise, if one type is a variable length atreycomposite type is that type.

— If only one type is a function type with a parameter type list (a function prototype),
the composite type is a function prototype with the parameter type list.

— If both types are function types with parameter type lists, the type of each parameter
in the composite parameter type list is the composite type of the corresponding
parameters.

These rules apply recuvsly to the types from which the twypes are deved.

For an identifier with internal or external linkage declared in a scope in which a prior
declaration of that identifier is visibfé) if the prior declaration specifies internal or
external linkage, the type of the identifier at the later declaration becomes the composite

type.

46) Twotypes need not be identical to be compatible.

47) As specified in 6.2.1, the later declaration might hide the prior declaration.

40 Language 86.2.7

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

EXAMPLE Given the following two file scope declarations:

int f(int (*)(), double (*)[3]);
int f(int (*)(char *), double (*)[]);

The resulting composite type for the function is:
int f(int (*)(char *), double (*)[3]);

86.2.7 Language 41

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.3 Corversions

Several operators corert operand values from one type to another automaticatys
subclause specifies the result required from suamplhicit conversionas well as those

that result from a cast operation (@plicit conversion. The list in 6.3.1.8 summarizes

the conersions performed by most ordinary operators; it is supplemented as required by
the discussion of each operator in 6.5.

Corversion of an operand value to a compatible type causes no change atuthenthe
representation.

Forward references: cast operators (6.5.4).

6.3.1 Arithmetic operands

6.3.1.1 Booleancharacters, and integers

Every integer type has ameger conversion rankdefined as follows:

— No two ggned integer types shall V& the same rank,ven if they havethe same
representation.

— The rank of a signed integer type shall be greater than the rani sfaad integer
type with less precision.

— The rank oflong long int shall be greater than the ranklofg int , which
shall be greater than the rankiof , which shall be greater than the ranksbbrt
int , which shall be greater than the ranksigfned char

— The rank of ay unsigned integer type shall equal the rank of the corresponding
signed integer type, if gn

— The rank of ap standard intger type shall be greater than the rank of extended
integer type with the same width.

— The rank ofthar shall equal the rank gigned char andunsigned char
— The rank of Bool shall be less than the rank of all other standard integer types.

— The rank of ap enumerated type shall equal the rank of the compatiblgentiype
(see 6.7.2.2).

— The rank of ap extended signed integer type relatito another extended signed
integer type with the same precision is implementation-defined, but still subject to the
other rules for determining the integer eension rank.

— For all integer typedl, T2, and T3, if T1 has greater rank thah2 and T2 has
greater rank tham3, thenT1 has greater rank tharg.

The following may be used in amgression wherger anint or unsigned int may
be used:

42 Language 86.3.1.1

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

— An object or expression with an integer type whose integeversion rank is less|
than or equal to the rank mit andunsigned int

— A bit-field of type_Bool , int ,signedint , orunsigned int

If anint can represent all values of the original type, the value igetted to anint ;
otherwise, it is coverted to anunsigned int . These are called thénteger
promotions*®) All other types are unchanged by the integer promotions.

The integer promotions preservalue including sign.As discussed earliewhether a
“plain” char is treated as signed is implementation-defined.

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers
(6.7.2.1).

6.3.1.2 Boolean type

When any scalar value is corerted to_Bool , the result is O if the value compares equal
to O; otherwise, the result is 1.

6.3.1.3 Signedand unsigned integers

When a value with intger type is coverted to another integer type other thaool , if
the value can be represented by th# tyge, it is unchanged.

Otherwise, if the n& type is unsigned, the value is weried by repeatedly adding or
subtracting one more than the maximuaiue that can be represented in the mgpe

until the value is in the range of thenmngype*®)

Otherwise, the e type is signed and the value cannot be represented in it; either the
result is implementation-defined or an implementation-defined signal is raised.

6.3.1.4 Reafloating and integer

When a finite glue of real floating type is ceerted to an integer type other thaBool ,
the fractional part is discarded (i.e., theue is truncated veard zero). If the value of
the integral part cannot be represented by the integer type, the behavior is urflefined.

When a value of integer type is emrted to a real floating type, if the value being
converted can be representexketly in the ne type, it is unchanged. If the value being
corverted is in the range of values that can be represented but cannot be represented

48) The integer promotions are applied only: as part of the usual arithmetiergions, to certain
argument gpressions, to the operands of the ungry, and ~ operators, and to both operands of the
shift operators, as specified by their respectiibclauses.

49) The rules describe arithmetic on the mathematical value, not the valueveh &ge of expression.

50) The remaindering operation performed when a value ofjénté/pe is coverted to unsigned type
need not be performed when a value of real floating type ieded to unsigned typeThus, the
range of portable real floating values is (Biype MAX-1).

86.3.1.4 Language 43

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

exactly, the result is either the nearest higher or nearesrloepresentable value, chosen
in an implementation-defined manndithe \alue being coverted is outside the range of
values that can be represented, the behavior is undefined.

6.3.1.5 Reafloating types

When afloat is promoted tadouble orlong double , or adouble is promoted
to long double , its value is unchanged (if the sourcalue is represented in the
precision and range of its type).

When adouble is demoted tdloat , along double is demoted tadouble or

float , or a \alue being represented in greater precision and range than required by its
semantic type (see 6.3.1.8) is explicitly wented (including to its wn type), if the alue |
being comerted can be represented exactly in ther e, it is unchangedlf the value

being cowmerted is in the range of values that can be represented but cannot be
represented exactlthe result is either the nearest higher or nearest lower representable
value, chosen in an implementation-defined mannérthe value being camerted is
outside the range of values that can be represented, the behavior is undefined.

6.3.1.6 Complex types

When a value of comptetype is comerted to another comptetype, both the real and
imaginary parts follew the cowersion rules for the corresponding real types.

6.3.1.7 Reahnd complex

When a value of real type is cmnted to a compbetype, the real part of the complex
result value is determined by the rules ofvamsion to the corresponding real type and
the imaginary part of the compleesult value is a posi# zro or an unsigned zero.

When a value of comptetype is comerted to a real type, the imaginary part of the
comple value is discarded and thalue of the real part is ceerted according to the
corversion rules for the corresponding real type.

6.3.1.8 Usuahrithmetic conversions

Mary operators that expect operands of arithmetic type causersmns and yield result
types in a similar wayThe purpose is to determinecammon real typéor the operands

and result.For the specified operands, each operand ise&tad, without change of type
domain, to a type whose corresponding real type is the common real type. Unless
explicitly stated otherwise, the common real type is also the corresponding real type of
the result, whose type domain is the type domain of the operandy ifréthéhe same,

and complg otherwise. Thigattern is called thesual arithmetic conversions

First, if the corresponding real type of either operaridrig double , the other
operand is corerted, without change of type domain, to a type whose
corresponding real type lisng double

44 Language 86.3.1.8

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

Otherwise, if the corresponding real type of either operambuble , the other
operand is corerted, without change of type domain, to a type whose
corresponding real type @®uble .

Otherwise, if the corresponding real type of either operarithas , the other
operand is corerted, without change of type domain, to a type whose
corresponding real type flat .5V

Otherwise, the intger promotions are performed on both operands. Then the
following rules are applied to the promoted operands:

If both operands ha the same type, then no further gersion is needed.

Otherwise, if both operandsvesgned intger types or both a unsigned
integer types, the operand with the type of lesser integeretsion rank is
corverted to the type of the operand with greater rank.

Otherwise, if the operand that has unsigned integer type has rank greater or
equal to the rank of the type of the other operand, then the operand with
signed integer type is coeerted to the type of the operand with unsigned
integer type.

Otherwise, if the type of the operand with signed integer type can represent
all of the values of the type of the operand with unsigned@entg/pe, then

the operand with unsigned integer type isveoied to the type of the
operand with signed integer type.

Otherwise, both operands are wemed to the unsigned integer type
corresponding to the type of the operand with signed integer type.

2 The \wlues of floating operands and of the results of floating expressions may be
represented in greater precision and range than that required by the type; the typeg are not
changed theretif)

51) For example, addition of alouble _Complex and afloat entails just the camrsion of the
float operand talouble (and yields alouble _Complex result).

52) The cast and assignment operators are still required to perform their specifiedsionns as
described in 6.3.1.4 and 6.3.1.5.

86.3.1.8 Language 45

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.3.2 Other operands

6.3.2.1 Lwalues, arrays, and function designators

An Ivalueis an expression with an object type or an incomplete type othevafthn®®

if an Ivalue does not designate an object when ivauated, the behavior is undefined.
When an object is said toVea m@rticular type, the type is specified by the Ivalue used to
designate the object. modifiable Ivaluds an halue that does not ha aray type, does
not hare an incomplete type, does notyea onst-qualified type, and if it is a structure
or union, does not ka any nember (including, recungély, any member or element of
all contained agggetes or unions) with a const-qualified type.

Except when it is the operand of tekzeof operatoy the unary& operatoy the ++
operatoythe-- operatoyor the left operand of the operator or an assignment operator,
an Ivalue that does notVearay type is coverted to the value stored in the designated
object (and is no longer analue). Ifthe Ivalue has qualified type, thalwe has the
unqualified ersion of the type of the Ivalue; otherwise, the value has the type of the
lvalue. Ifthe halue has an incomplete type and does ne¢ laay type, the behavior is
undefined.

Except when it is the operand of thigeof operator or the unar§& operatoy or is a
string literal used to initialize an arragn epression that has type “array ofp€’ is
cornverted to an expression with type “pointertype’ t hat points to the initial element of
the array object and is not aralue. Ifthe array object has register storage class, the
behaior is undefined.

A function designatoiis an &pression that has function type. Except when it is the
operand of thesizeof —operato?® or the unary& operator a function designator with
type “function returningtyp€’ i s converted to an expression that has type “pointer to
function returningype’.

Forward references: address and indirection operators (6.5.3.2), assignment operators
(6.5.16), common definitions<stddef.h> (7.17), initialization (6.7.8), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators
(6.5.3.1), thesizeof operator (6.5.3.4), structure and union members (6.5.2.3).

53) The name “lvalue’comes originally from the assignment expresstin=E2 , in which the left
operancEl is required to be a (modifiable)alue. Itis perhaps better considered as representing an
object ‘locator value’. Whatis sometimes called “rvaluds in this International Standard described
as the “value of an expression”.

An obvious example of an Ivalue is an identifier of an object. As a further examiles d& unary
expression that is a pointer to an objég,is an Ivalue that designates the object to whigwoints.

54) Because this carrsion does not occuthe operand of theizeof operator remains a function
designator and violates the constraint in 6.5.3.4.

46 Language 86.3.2.1

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

6.3.2.2 void

The (nonexistent) value ofwid expressiorfan expression that has typmid) shall not

be used in anway, and implicit or explicit comersions (except tawoid) shall not be

applied to such anxpression. Ifan expression of gnother type is ealuated as a void
expression, its alue or designator is discarded. (A void expressiorvatuated for its

side effects.)

6.3.2.3 Pointers

A pointer tovoid may be cowerted to or from a pointer to grincomplete or object
type. Apointer to ag incomplete or object type may be verted to a pointer teoid
and back again; the result shall compare equal to the original pointer.

For any qualifier g, a pinter to a norg-qualified type may be cwarted to a pointer to
theqg-qualified version of the type; thalues stored in the original and werted pointers
shall compare equal.

An integer constantx@ression with the value 0, or such an expression cast to type
void * , is called anull pointer constant® If a null pointer constant is ceerted to a
pointer type, the resulting poinfealled anull pointer, is guaranteed to compare unequal

to a pointer to anobject or function.

Corversion of a null pointer to another pointer type yields a null pointer of that type.
Any two rull pointers shall compare equal.

An integer may be coerted to ay pointer type. Except as previously specified, the
result is implementation-defined, might not be correctly aligned, might not point to an
entity of the referenced type, and might be a trap represent&tion. |

Any pointer type may be ceomrted to an intger type. Except as previously specified, the
result is implementation-defined. If the result cannot be represented in the integer type,
the behavior is undefinedl'he result need not be in the range of values gpfiateger

type.

A pointer to an object or incomplete type may beveded to a pointer to a different
object or incomplete type. If the resulting pointer is not correctly alfjhdar the

pointed-to type, the behavior is undefined. Otherwise, wheweded back again, the
result shall compare equal to the original pointévhen a pointer to an object is

55) The macrdNULL s defined incstddef.h> (and other headers) as a null pointer constant; see 7.17.

56) The mapping functions for cuerting a pointer to an ingger or an integer to a pointer are intended to
be consistent with the addressing structure of xeeution environment.

57) In general, the concept “correctly aligneid’transitive: if a pointer to type A is correctly aligned for a
pointer to type B, which in turn is correctly aligned for a pointer to type C, then a pointer to type A is
correctly aligned for a pointer to type C.

86.3.2.3 Language 47

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

corverted to a pointer to a character type, the result points towesi@addressed byte of
the object. Succes& increments of the result, up to the size of the object, yield pointers
to the remaining bytes of the object.

A pointer to a function of one type may be eemed to a pointer to a function of another
type and back again; the result shall compare equal to the original péfrdeornverted
pointer is used to call a function whose type is not compatible with the pointed-to type,
the behavior is undefined.

Forward references: cast operators (6.5.4), equality operators (6.5.9), integer types
capable of holding object pointers (7.18.1.4), simple assignment (6.5.16.1).

48 Language 86.3.2.3

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

6.4 Lexical elements

Syntax
token:
keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator
each non-white-space character that cannot be one of the abo

Constraints

Each preprocessing token that is \wted to a token shall ka te lexical form of a
keyword, an identifigra mnstant, a string literal, or a punctuator.

Semantics

A tokenis the minimal lexical element of the language in translation phases 7 and 8. The
catgyories of tokens are:ekwords, identifiers, constants, string literals, and punctuators.

A preprocessing token is the minimal lexical element of the language in translation
phases 3 through 6. The categories of preprocessing tokens are: header names,
identifiers, preprocessing numbers, character constants, string literals, punctuators, and
single non-white-space characters that do nxicddly match the other preprocessing
token categories®) If a' or a" character matches the last categding behavior is
undefined. Preprocessing tols can be separated Imhite spacge this consists of
comments (described later), white-space charactergpace, horizontal tab, new-line,
vertical tab, and form-feed), or both. As described in 6.10, in certain circumstances
during translation phase 4, white space (or the absence thereof) serves as more than
preprocessing token separation. White space may appear within a preprocessing token
only as part of a header name or between the quotation characters in a character constant
or string literal.

58) An additional categoryplacemarlers, is used internally in translation phase 4 (see 6.10.3.3); it cannot
occur in source files.

86.4 Language 49

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

If the input stream has been parsed into preprocessieggalp to a gen characterthe

next preprocessing token is the longest sequence of characters that could constitute a
preprocessing t@n. Thereis one &ception to this rule: header name preprocessing
tokens are recognized only withisinclude preprocessing direess and in |
implementation-defined locations withitipragma directves. In such contets, a |
sequence of characters that could be either a header name or a string literal is recognized
as the former.

EXAMPLE 1 The program fragmeritEx is parsed as a preprocessing number token (one that is not a
valid floating or integer constant tokenyea though a parse as the pair of preprocessing tokearsl Ex

might produce a valid expression (for exampld&ifwere a macro defined ad). Similarly, the program

fragmentlE1 is parsed as a preprocessing number (one thatakdafleating constant token), whether or
notE is a macro name.

EXAMPLE 2 The program fragment+++++y is parsed az ++ ++ + y , which violates a constraint on
increment operatorsyen though the parse++ + ++y might yield a correct expression.

Forward references: character constants (6.4.4.4), comments (6.4.9), expressions (6.5),
floating constants (6.4.4.2), header names (6.4.7), macro replacement (6.10.3), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators
(6.5.3.1), preprocessing diraas (6.10), preprocessing numbers (6.4.8), string literals
(6.4.5).

6.4.1 Keywords

Syntax
keyword: one of

auto enum restrict unsigned
break extern return void
case float short volatile
char for signed while
const goto sizeof _Bool
continue if static _Complex
default inline struct _Imaginary
do int switch
double long typedef
else register union

Semantics

The abwe tokens (case sensit) are resered (in translation phases 7 and 8) for use as
keywords, and shall not be used otherwise. Tégwvord _Imaginary is resered for |
specifying imaginary type¥)

59) One possible specification for imaginary types appears ix &ine |

50 Language 86.4.1

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

6.4.2 ldentifiers
6.4.2.1 General
Syntax

identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit
identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of
a

_ b c d e f
n o p g r s
A B C
N O P

O O
T M
U)'I'I

digit: one of
0 1 2 3 4 5 6 7 8 9
Semantics

An identifier is a sequence of nondigit characters (including the unders¢adtes
lowercase and uppercase Latin letters, and other characters) and digits, which designates
one or more entities as described in 6.2.1lwé@ase and uppercase letters are distinct.
There is no specific limit on the maximum length of an identifier.

Each urwversal character name in an identifier shall designate a character whose encoding
in ISO/IEC 10646 dlls into one of the ranges specified in anf®®® The initial
character shall not be a uaisal character name designating a digit. An implementation
may allav multibyte characters that are not part of the basic source character set to

appear in identifiers; which characters and their correspondencevasahicharacter
names is implementation-defined.

When preprocessing tokens are \awted to tokens during translation phase 7, if a

preprocessing token could be gerted to either aéyword or an identifierit is corverted
to a keyword.

60) On systems in which lirdes cannot accept extended characters, an encoding of Yeesahcharacter
name may be used in forming valid external identifiefer example, some otherwise unused
character or sequence of characters may be used to encode thea unversal character name.
Extended characters may produce a long external identifier.

86.4.2.1 Language 51

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of significant initial
characters in an identifier; the limit for axernal name(an identifier that has external
linkage) may be more restrieéi than that for arinternal name(a macro name or an
identifier that does not kia exernal linkage). The number of significant characters in an
identifier is implementation-defined.

Any identifiers that differ in a significant character are different identifiers. If two
identifiers differ only in nonsignificant characters, the behavior is undefined.

Forward references: universal character names (6.4.3), macro replacement (6.10.3).
6.4.2.2 Pedefined identifiers
Semantics

The identifier __func__ shall be implicitly declared by the translator as if,
immediately following the opening brace of each function definition, the declaration

static const char _ _func__]] = "function-namg
appeared, wherfeinction-names the name of the lexically-enclosing functfoh.

This name is encoded as if the implicit declaration had been written in the source
character set and then translated into #®ewion character set as indicated in translation
phase 5.

EXAMPLE Considetthe code fragment:

#include <stdio.h>
void myfunc(void)

{
printf("%s\n", _ _func_);

L
}

Each time the function is called, it will print to the standard output stream:

myfunc

Forward references: function definitions (6.9.1).

61) Since the name _func__ is reserved for anuse by the implementation (7.1.3), if yaother
identifier is explicitly declared using the namefunc__ , the behavior is undefined.

52 Language 86.4.2.2

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

6.4.3 Unversal character names
Syntax

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

hex-quad:
hexadecimal-digit hexadecimal-digit
hexadecimal-digit hexadecimal-digit

Constraints

A universal character name shall not specify a character whose short identifier is less than
00AO other than 0024$§, 0040 @, or 0060 {), nor one in the range D800 through

DFFF inclusie 52

Description

Universal character names may be used in identifiers, character constants, and string
literals to designate characters that are not in the basic character set.

Semantics

The unversal character name&J nnnnnnnndesignates the character whose eight-digit
short identifier (as specified by ISO/IEC 10646hignnnniP) Similarly, the unversal
character namel nnnndesignates the character whose {fdigiit short identifier isannn
(and whose eight-digit short identifier is OODIN).

62) The disallowed characters are the characters in the basic character set and the code positions reserved
by ISO/IEC 10646 for control characters, the character DELETE, and the S-zone (reserved for use by
UTF-16).

63) Short identifiers for characters were first specified in ISO/IEC 10646-1/AMD9:1997.

86.4.3 Language 53

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.4.4 Constants
Syntax

constant:
integer-constant
floating-constant
enumeration-constant
character-constant

Constraints

Each constant shall & a ype and the alue of a constant shall be in the range |of
representable values for its type.

Semantics

Each constant has a type, determined by its form and value, as detailed later.
6.4.4.1 Integer constants

Syntax

integer-constant:
decimal-constant inger-suffixyp
octal-constant intger-suffixypt
hexadecimal-constant irger-suffixpt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-prefix:one of
Ox 0OX

nonzero-digit: one of
1 2 3 45 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

54 Language 86.4.4.1

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

hexadecimal-digit: one of
0 1 2 3 45 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-stix long-suffiypg
unsigned-suffix long-long-suffix
long-suffix unsigned-suffix
long-long-suffix unsigned-suffj

unsigned-suffix:one of
u U

long-suffix: one of
| L

long-long-suffix: one of
I LL

Description

An integer constant begins with a digititithas no period or exponent part. It mayeéha
prefix that specifies its base and a suffix that specifies its type.

A decimal constant lggns with a nonzero digit and consists of a sequence of decimal
digits. Anoctal constant consists of the pre@ioptionally followed by a sequence of the
digits 0 through7 only. A hexadecimal constant consists of the préfxor 0X followed

by a sequence of the decimal digits and the lettds A) throughf (or F) with values

10 through 15 respeutly.

Semantics

The walue of a decimal constant is computed base 10; that of an octal constant, base 8;
that of a hexadecimal constant, base 16. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in whiciuescan
be represented.

86.4.4.1 Language 55

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Octal or Hexadecimal

Suffix DecimalConstant Constant
none int int
long int unsigned int
long long int long int
unsigned long int
long long int

unsigned long long int

u or U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int

| or L long int long int
long long int unsigned long int
long long int

unsigned long long int

Both u or U unsigned long int unsigned long int
and | or L unsigned long long int unsigned long long int
I or LL long long int long long int

unsigned long long int

Both u or U unsigned long long int unsigned long long int
and Il or LL

If an integer constant cannot be represented lyytgoe in its list, it may hae an |
extended integer type, if the extended integer type can represeatués \f all of the

types in the list for the constant are signed, the extended integer type shall be signed. If
all of the types in the list for the constant are unsigned xieme@ed integer type shall be
unsigned. lIfthe list contains both signed and unsigned types, the extended integer type
may be signed or unsignedf. an integer constant cannot be represented lpytyge in |

its list and has no extended integer type, then the integer constant has no type.

56 Language 86.4.4.1

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

6.4.4.2 Floating constants
Syntax

floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:
fractional-constant exponent-pggt floating-suffiyp
digit-sequence exponent-part floating-siffix

hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant
binary-exponent-part floating-suffix
hexadecimal-prefix hexadecimal-digit-sequence
binary-exponent-part floating-suffix

fractional-constant:
digit-sequencg,; . digit-sequence
digit-sequence.

exponent-part:
e signypt digit-sequence
E signppt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit
hexadecimal-fractional-constant:
hexadecimal-digit-sequengg .
hexadecimal-digit-sequence
hexadecimal-digit-sequence

binary-exponent-part:
p signypt digit-sequence
P sigrppt digit-sequence
hexadecimal-digit-sequence:

hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

floating-suffix: one of
f I F L

86.4.4.2 Language 57

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Description

A floating constant hassagnificand parthat may be followed by agxponent partand a

suffix that specifies its type. The components of the significand part may include a digit
sequence representing the whole-number part, followed by a pediotbljowed by a

digit sequence representing the fraction pdite components of the exponent part are an

e, E, p, or P followed by an exponent consisting of an optionally signed digit sequence.

Either the whole-number part or the fraction part has to be present; for decimal floating
constants, either the period or the exponent part has to be present.

Semantics

The significand part is interpreted as a (decimal or hexadecimal) rational number; the
digit sequence in the exponent part is interpreted as a decimal .integedecimal

floating constants, the exponent indicates the power of 10 by which the significand part is
to be scaled.For hexadecimal floating constants, the exponent indicates the power of 2

by which the significand part is to be scalédr decimal floating constants, and also for
hexadecimal floating constants whEhT_RADIX is not a power of 2, the result is either

the nearest representable value, or the larger or smaller represeatablenmediately
adjacent to the nearest representable value, chosen in an implementation-defined manner.
For hexadecimal floating constants whéiLT_RADIX is a power of 2, the result is
correctly rounded.

An unsuffixed floating constant has typeuble . If suffixed by the lettef or F, it has
typefloat . If suffixed by the letter orL, it has typdong double

Floating constants are ogamted to internal format as if at translation-time. The
corversion of a floating constant shall not raise aneptional condition or a floating-
point exception abecution time.

Recommended practice

The implementation should produce a diagnostic message ikaddémmal constant
cannot be represented exactly in iwsleation format; the implementation should then
proceed with the translation of the program.

The translation-time caersion of floating constants should match tkxecation-time
conversion of character strings by library functions, suchst®d , given matching
inputs suitable for both cwarsions, the same result format, and defaxécetion-time

rounding®®

64) The specification for the library functions recommends more accuraversiom than required for
floating constants (see 7.20.1.3).

58 Language 86.4.4.2

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

6.4.4.3 Enumeration constants
Syntax

enumeration-constant:

identifier

Semantics
An identifier declared as an enumeration constant hasriype
Forward references: enumeration specifiers (6.7.2.2).
6.4.4.4 Character constants
Syntax

character-constant:
' c-char-sequencé
L' c-char-sequencé

c-char-sequence:
c-char
c-charsequence c-char

c-char:
ary member of the source character set except
the single-quoté, backslash , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

simple-escape-sequencene of
S S A\
\a \b \f \n \r \t \Wv

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

86.4.4.4 Language 59

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Description

An integer character constant is a sequence of one or more multibyte characters enclosed
in single-quotes, as iR . A wide character constant is the same, except prefixed by the
letter L. With a fev exceptions detailed latethe elements of the sequence are any
members of the source character sety ta®@ mapped in an implementation-defined
manner to members of theeeution character set.

The single-quotée , the double-quotée', the question-mark?, the backslash , and
arbitrary integer alues are representable according to the following table of escape
sequences:

single quotée \
double quote \ "
question mark \ ?
backslash \ A\
octal character \ octal digits

hexadecimal character \x hexadecimal digits

The double-quoté and question-marR are representable either by themsslor by the
escape sequenc®&s and\? , respectiely, but the single-quoté and the backslash
shall be represented, respediy, by the escape sequendesand\\ .

The octal digits that follw the backslash in an octal escape sequence are taken to be part
of the construction of a single character for angatecharacter constant or of a single
wide character for a wide character constant. The numerical value of the octal integer so
formed specifies the value of the desired character or wide character.

The hexadecimal digits that follothe backslash and the lettein a hexadecimal escape
sequence are taken to be part of the construction of a single character for an integer
character constant or of a single wide character for a wide character constant. The
numerical value of the hexadecimal integer so formed specifiealhe of the desired
character or wide character.

Each octal or hexadecimal escape sequence is the longest sequence of characters that can
constitute the escape sequence.

In addition, characters not in the basic character set are representablevdsgalni
character names and certain nongraphic characters are representable by escape sequences
consisting of the backslashfollowed by a lowercase letteya , \b , \f ,\n, \r ,\t ,

and\v .%%

65) The semantics of these characters were discussed in 5.2.%. othan character follows a backslash,
the result is not a token and a diagnostic is required. See “future language dirg@idis4).

60 Language 86.4.4.4

10

11

12
13

14

15

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

Constraints

The value of an octal or kadecimal escape sequence shall be in the range of
representable values for the typaesigned char ~ for an integer character constant, or
the unsigned type correspondingatohar_t for a wide character constant.

Semantics

An integer character constant has typie . The value of an ingger character constant
containing a single character that maps to a single-bygeutgon character is the
numerical value of the representation of the mapped character interpreted as an integer.
The value of an integer character constant containing more than one character (e.g.,
‘ab'), or containing a character or escape sequence that does not map to a single-byte
execution charactelis implementation-defined. Hn integer character constant contains

a dngle character or escape sequence, its value is the one that results when an object with
typechar whose walue is that of the single character or escape sequencevestedrio

typeint

A wide character constant has typechar t , an nteger type defined in the
<stddef.h> header The value of a wide character constant containing a single
multibyte character that maps to a member of the extendedt®n character set is the
wide character corresponding to that multibyte charaeseidefined by thembtowc
function, with an implementation-defined current locale. The value of a wide character
constant containing more than one multibyte charaaercontaining a multibyte
character or escape sequence not represented in the exteeclgtbe character set, is
implementation-defined.

EXAMPLE 1 The constructioN0' is commonly used to represent the null character.

EXAMPLE 2 Consider implementations that use two’s-complement representation fgersend eight
bits for objects that va@ type char . In an mplementation in which typehar has the same range of
values assigned char , the integer character constdnEF' has the value-1; if typechar has the
same range of values agsigned char , the character constaitFF' has the value-255.

EXAMPLE 3 Ewn if eight bits are used for objects thavéndype char , the constructiol\x123'

specifies an integer character constant containing only one chasattera hexadecimal escape sequence

is terminated only by a non-hexadecimal charactergpecify an integer character constant containing the

two characters whose values &€2' and'3' , the constructio0223' may be used, since an octal
escape sequence is terminated after three octal digits. (The value of this two-character integer character
constant is implementation-defined.)

EXAMPLE 4 Ewen if 12 or more bits are used for objects thatehtgpe wchar_t , the construction
L'\1234' specifies the implementation-definedlue that results from the combination of the values
0123 and'4'

Forward references: common definitionsstddef.h> (7.17), thembtowc function
(7.20.7.2).

86.4.4.4 Language 61

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.4.5 String literals
Syntax

string-literal:
" s-char-sequeneg; "
L" s-char-sequeneg "

s-char-sequence:
s-char
s-charsequence s-char

s-char:
ary member of the source character set except
the double-quote, backslash , or new-line character
escape-sequence

Description

A character string literalis a sequence of zero or more multibyte characters enclosed in
double-quotes, as itxyz" . A wide string literalis the same, except prefixed by the
letterL.

The same considerations apply to each element of the sequence in a character string
literal or a wide string literal as if it were in an igée character constant or a wide
character constantxeept that the single-quoteis representable either by itself or by the
escape sequente , but the double-quoté shall be represented by the escape sequence

\" .

Semantics

In translation phase 6, the multibyte character sequences specifie¢ bygaence of
adjacent character and wide string literal tokens are concatenated into a single multibyte
character sequence. If yamf the tokens are wide string literal tokens, the resulting
multibyte character sequence is treated as a wide string literal; otherwise, it is treated as a
character string literal.

In translation phase 7, a byte or code afue zero is appended to each multibyte
character sequence that results from a string literal or li®%alEhe multibyte character
sequence is then used to initialize an array of static storage duration and length just
sufficient to contain the sequencEor character string literals, the array elementgeha

type char , and are initialized with the individual bytes of the multibyte character
sequence; for wide string literals, the array element® hgpe wchar t , and are
initialized with the sequence of wide characters corresponding to the multibyte character

66) A character string literal need not be a string (see 7.1.1), because a null character may be embedded in
it by a\0 escape sequence.

62 Language 86.4.5

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

sequence, as defined by théstowcs function with an implementation-defined current
locale. Thevalue of a string literal containing a multibyte character or escape sequence
not represented in theeeution character set is implementation-defined.

It is unspecified whether these arrays are distinct provided their elemesstshia
appropriate &lues. Ifthe program attempts to modify such an arthg behavior is
undefined.

EXAMPLE Thispair of adjacent character string literals
"\x12" "3"

produces a single character string literal containing tleecharacters whose values &el2' and'3'
because escape sequences arget®a into single members of theeeution character set just prior to
adjacent string literal concatenation.

Forward references: common definitions<stddef.h> (7.17), the mbstowcs
function (7.20.8.1).

6.4.6 Punctuators
Syntax

punctuator: one of

(1 ¢y {3ry. =

+ - & o+ - o~ |

I % << > < > <= >= == 1= 1~ | && ||
?o0 L.

= *= [= Op= += = < <= >>= &= "= |:

, H ##

< > <% %> %: %:%:

Semantics

A punctuator is a symbol that has independent syntactic and semantic significance.
Depending on conkg, it may specify an operation to be performed (which in turn may
yield a \alue or a function designaiqroduce a side effect, or some combination thereof)

in which case it is known as aperator (other forms of operator also exist in some
contts). Anoperandis an entity on which an operator acts.

86.4.6 Language 63

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

In all aspects of the language, the six toRens
< > <% %> % %:%:

behae, respectrely, the same as the six tokens
[1 { } # # #

except for their spelling®

Forward references: expressions (6.5), declarations (6.7), preprocessing diescti
(6.10), statements (6.8).

6.4.7 Header names
Syntax

header-name:
< h-char-sequence>
" g-char-sequence'

h-char-sequence:
h-char
h-charsequence h-char

h-char:
any member of the source character set except
the new-line character and

g-char-sequence:
g-char
g-charsequence g-char

g-char:
any member of the source character set except
the new-line character afid

Semantics

The sequences in both forms of header names are mapped in an implementation-defined
manner to headers or external source file names as specified in 6.10.2.

If the characters,\,",// ,or/* occur in the sequence between ¢h@end> delimiters,
the behavior is undefined. Similarlif the characters, \, // , or /* occur in the

67) These tokens are sometimes called “digraphs”.

68) Thus[and<: behae dfferently when “stringized’ (see 6.10.3.2), but can otherwise be freely
interchanged.

64 Language 86.4.7

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

sequence between the delimiters, the behdor is undefined® Header name|
preprocessing tokens are recognized only witimiclude preprocessing direetts and |

in implementation-defined locations withipragma directives.”®)

EXAMPLE The folloving sequence of characters:

0x3<1l/a.h>1e2
#include <1/a.h>
#define const.member@$

forms the following sequence of preprocessingtak(with each individual preprocessing token delimited
by a{ on the left and & on the right).

{Ox3{<H1K/ HaH. Kh{>H1le2}
{#Hinclude } {<l/a.h> }
{#}{define } {const {. }{ member}{ @{$}

Forward references: source file inclusion (6.10.2).

6.4.8 Prepocessing numbers

Syntax
pp-number:
digit
digit
pp-number digit
pp-number identifier-nondigit
pp-numbere sign
pp-number E sign
pp-numberp sign
pp-number P sign
pp-number.
Description

A preprocessing number fgp@s with a digit optionally preceded by a period énd may
be followed by wlid identifier characters and the character sequestcgs- , E+, E-,
p+, p- , P+, orP-.

Preprocessing number tokens lexically include all floating and integer constant tokens.
Semantics

A preprocessing humber does novédype or a value; it acquires both after a successful
corversion (as part of translation phase 7) to a floating constant token or an integer
constant token.

69) Thus, sequences of characters that resemble escape sequences cause undefined behavior.

70) For an exkample of a header name preprocessing token usetjpragma directive, see 6.10.9.

86.4.8 Language 65

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.4.9 Comments

Except within a character constant, a string literal, or a comment, the characters
introduce a comment. The contents of such a commentxaraireed only to identify
multibyte characters and to find the charactérshat terminate it

Except within a character constant, a string literal, or a comment, the characters
introduce a comment that includes all multibyte characters up to, but not including, the
next new-line characterThe contents of such a comment are examined only to identify
multibyte characters and to find the terminating new-line character.

EXAMPLE
"a/lb" / four-chamcter string literal
#include "//e" 1 undefined behavior
I*l /1 comment, not syntax error
f = g *h; /1 equivalenttd = g / h;
IN
i(); I part of a two-line comment
A
I 0 I part of a two-line comment
#define glue(x,y) x##y
glue(/,/)) k(); I syntax errornot comment
F*IF11(); i equivalent td();
m = n//**/o
+ p; / | equivalenttan = n + p;
71) Thus/* ... */ comments do not nest.

66 Language 86.4.9

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

6.5 Expressions

An expressionis a sequence of operators and operands that specifies computation of a
value, or that designates an object or a function, or that generates feis, efr that
performs a combination thereof.

Between the previous and xtesequence point an object shallvdats stored value
modified at most once by theaiuation of an expressioff) Furthermore, the prioralue |
shall be read only to determine the value to be sttYed.

The grouping of operators and operands is indicated by the s{htExcept as specified
later (for the function-calf) , && || , ?: , and comma operators), the order vélaation
of subexpressions and the order in which side effecésgake are both unspecified.

Some operators (the unary operatorand the binary operators<, >>, & ~, and |,
collectively described aditwise operators are required to hae @erands that ha
integer type. These operators yieldlwes that depend on the internal representations of
integers, and hae implementation-defined and undefined aspects for signed types.

If an exceptional conditionoccurs during thevaluation of an expression (that is, if the
result is not mathematically defined or not in the range of representable values for its
type), the behavior is undefined.

Theeffective typeof an object for an access to its stored value is the declared type of the
object, if aly.”® If a value is stored into an objectvireg no declared type through an
lvalue haing a type that is not a character type, then the type of the Ivalue becomes the

72) A floating-point status flag is not an object and can be set more than once within an expression.
73) This paragraph renders undefined statement expressions such as
i = + +i+1;
afi++] =1i;
while allowing
=i+ 1
afi] =1i;

74) The syntax specifies the precedence of operators irvéheaton of an gpression, which is the same
as the order of the major subclauses of this subclause, highest precedentiustor example, the
expressions alwed as the operands of the binarpperator (6.5.6) are those expressions defined in
6.5.1 through 6.5.6. The exceptions are cast expressions (6.5.4) as operands of unary operators
(6.5.3), and an operand contained betweeyn a@inthe following pairs of operators: grouping
parenthese§ (6.5.1), subscripting brackefis (6.5.2.1), function-call parenthesgs (6.5.2.2), and
the conditional operatdt: (6.5.15).

Within each major subclause, the operatoreae same precedence. Left- or right-associativity is
indicated in each subclause by the syntax for the expressions discussed therein.

75) Allocated objects va ro declared type.

86.5 Language 67

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

effective type of the object for that access and for subsequent accesses that do not modify
the stored alue. If a value is copied into an object\hag no declared type using
memcpy or memmove or is awpied as an array of character type, then the eftegtpe

of the modified object for that access and for subsequent accesses that do not modify the
value is the effectie type of the object from which the value is copied, if it has dra.

all other accesses to an object having no declared type, theveffigpg of the object is

simply the type of the Ivalue used for the access.

An object shall hee its stored value accessed only by an Ivakpression that has one of
the following types™®

— atype compatible with the effeug type of the object,
— aqualified version of a type compatible with the effeztype of the object,

— atype that is the signed or unsigned type corresponding to the \edf¢ygie of the
object,

— atype that is the signed or unsigned type corresponding to a qualified version of the
effective type of the object,

— an aggregae or union type that includes one of the aforementioned types among its
members (including, recuray, a member of a subaggyeae or contained union), or

— acharacter type.

A floating expression may lm®ntracted that is, @aluated as though it were an atomic
operation, thereby omitting rounding errors implied by the source code and the
expression eduation method.”) TheFP_CONTRACPragma inkmath.h> provides a

way to disallow contracted epressions. Otherwisayhether and he expressions are
contracted is implementation-defin€d.

Forward references: theFP_CONTRACPragma (7.12.2), copying functions (7.21.2).

76) The intent of this list is to specify those circumstances in which an object may or may not be aliased.
77) A contracted expression might also omit the raising of floating-point exceptions.

78) This license is specifically intended to allamplementations to exploit fast machine instructions that
combine multiple C operators. As contractions potentially undermine predictasrilitycan gen
decrease accunacfor containing expressions, their use needs to be well-defined and clearly
documented.

68 Language 86.5

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

6.5.1 Primary expressions
Syntax

primary-expression:
identifier
constant
string-literal
(expression)

Semantics

An identifier is a primary »@ression, provided it has been declared as designating an
object (in which case it is andlue) or a function (in which case it is a function
designatory?

A constant is a primaryxpression. Itgype depends on its form and value, as detailed in
6.4.4.

A string literal is a primary>@ression. lis an Ivalue with type as detailed in 6.4.5.

A parenthesized expression is a primaxpression. Itdype and alue are identical to
those of the unparenthesizedpeession. lis an Ivalue, a function designator a wid
expression if the unparenthesized expression is, resggctian halue, a function
designataror a \oid expression.

Forward references: declarations (6.7).

6.5.2 Postfix operators
Syntax

postfix-expression:
primary-expression
postfix-expressior] expression |
postfix-expressior(argument-expression-ligj;)
postfix-expression identifier
postfix-expression> identifier
postfix-expressiont+
postfix-expression-
(type-name) { initializer-list }
(type-name) { initializer-list , }

79) Thus, an undeclared identifier is a violation of the syntax.

86.5.2 Language 69

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

argument-expression-list:
assignment-expression
argument-expression-list assignment-expression

6.5.2.1 Array subscripting
Constraints

One of the expressions shallvbkaype “pointer to objectype’, the other expression shall
have integer type, and the result has typgge'.

Semantics

A postfix expression followed by an expression in square bradkets a subscripted
designation of an element of an array objédte definition of the subscript operafpr
is thatE1[E2] is identical to(*((E1)+(E2))) . Because of the cearsion rules that
apply to the binary+ operatoy if E1 is an array object (eqealently, a pointer to the
initial element of an array object) ai® is an integerE1[E2] designates th&2-th
element ofE1 (counting from zero).

Successe subscript operators designate an element of a multidimensional array object.
If E is ann-dimensional arrayn= 2) with dimensiong x j x---x Kk, thenE (used as
other than an Ivalue) is cested to a pointer to ann(1)-dimensional array with
dimensionsj x---x k. If the unary* operator is applied to this pointer explicjtlyr
implicitly as a result of subscripting, the result is the pointeattol)-dimensional array,
which itself is cowmerted into a pointer if used as other than aiug. It follovs from this

that arrays are stored in row-major order (last subscript varies fastest).

EXAMPLE Considetthe array object defined by the declaration
int x[3][5];

Herex is a 3x 5 aray ofint s; more precisely is an array of three element objects, each of which is an
array of fiveint s. In the expressiox{i] , which is equiaent to(*((x)+(i))) , X is first cowverted to

a pointer to the initial array of fivint s. Then is adjusted according to the typexqfwhich conceptually
entails multiplyingi by the size of the object to which the pointer points, namely an array ahfiive
objects. Theesults are added and indirection is applied to yield an array ahfive. When used in the
expressionx[i][j] , that array is in turn caerted to a pointer to the first of thiet s, sox([i][j]

yields anint .

Forward references: additve erators (6.5.6), address and indirection operators
(6.5.3.2), array declarators (6.7.5.2).

70 Language 86.5.2.1

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

6.5.2.2 Function calls
Constraints

The expression that denotes the called fun&tioshall hae type pointer to function
returningvoid or returning an object type other than an array type.

If the expression that denotes the called function has a type that includes a prototype, the
number of arguments shall agree with the number of parameters. Each argument shall
have a ype such that its value may be assigned to an object with the unqualified version
of the type of its corresponding parameter.

Semantics

A postfix expression followed by parenthes@s containing a possibly emptgomma-
separated list ofxpressions is a function call. The postfix expression denotes the called
function. Thélist of expressions specifies the arguments to the function.

An argument may be an expression of abject type. In preparing for the call to a
function, the aguments arew@luated, and each parameter is assigned the value of the
corresponding argumefit)

If the expression that denotes the called function has type pointer to function returning an
object type, the function call expression has the same type as that object type, and has the
value determined as specified in 6.8.6.4. Otherwise, the function call hasdigpe If

an attempt is made to modify the result of a function call or to access it after the next
sequence point, the behavior is undefined.

If the expression that denotes the called function has a type that does not include a
prototype, the intger promotions are performed on each argument, and arguments that
have type float are promoted tadouble . These are called thdefault argument
promotions If the number of arguments does not equal the number of parameters, the
behaior is undefined. If the function is defined with a type that includes a prototype, and
either the prototype ends with an ellipsis.(..) or the types of the arguments after
promotion are not compatible with the types of the parameters, theidrelsaundefined.

If the function is defined with a type that does not include a prototype, and the types of
the arguments after promotion are not compatible with those of the parameters after
promotion, the behavior is undefined, except for the following cases:

80) Most often, this is the result of a@nting an identifier that is a function designator.

81) A function may change theales of its parameters, but these changes cannot affect the values of the
arguments. Orthe other hand, it is possible to pass a pointer to an object, and the function may
change the value of the object pointed fo.parameter declared to V& aray or function type is
adjusted to hae a pinter type as described in 6.9.1.

86.5.2.2 Language 71

10

11

12

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

— one promoted type is a signed e type, the other promoted type is the
corresponding unsigned integer type, and the value is representable in both types;

— both types are pointers to qualified or unqualified versions of a character type or
void .

If the expression that denotes the called function has a type that does include a prototype,
the arguments are implicitly ceerted, as if by assignment, to the types of the
corresponding parameters, taking the type of each parameter to be the unqualified version
of its declared type. The ellipsis notation in a function prototype declarator causes
argument type corersion to stop after the last declared paramelee default argument
promotions are performed on trailing arguments.

No other cowersions are performed implicitly; in particulahe number and types of
arguments are not compared with those of the parameters in a function definition that
does not include a function prototype declarator.

If the function is defined with a type that is not compatible with the type (of the
expression) pointed to by the expression that denotes the called function, theibisha
undefined.

The order of eduation of the function designatothe actual arguments, and
subepressions within the actual arguments is unspecified, but there is a sequence point
before the actual call.

Recursie function calls shall be permitted, both directly and indirectly througlclaain
of other functions.
EXAMPLE In the function call

(pff10]1) (f20), 13() + f40)

the functiond1 , f2 , f3 , andf4 may be called in gnorder All side effects hee b be @mpleted before
the function pointed to bgf[f1()] is called.

Forward references: function declarators (including prototypes) (6.7.5.3), function
definitions (6.9.1), theeturn statement (6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members
Constraints

The first operand of the operator shall hae a galified or unqualified structure or union
type, and the second operand shall name a member of that type.

The first operand of the> operator shall hae type “pointer to qualified or unqualified
structure” or ‘‘pointer to qualified or unqualified union”, and the second operand shall
name a member of the type pointed to.

72 Language 86.5.2.3

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

Semantics

A postfix expression followed by theoperator and an identifier designates a member of
a dructure or union object. The value is that of the named meftftamd is an lalue if |
the first expression is andle. Ifthe first expression has qualified type, the result has
the so-qualified version of the type of the designated member.

A postfix expression followed by the operator and an identifier designates a member
of a structure or union object. The value is that of the named member of the object to
which the first expression points, and is an Iv&fddf the first expression is a pointer to

a qualified type, the result has the so-qualifiextsion of the type of the designated
member.

One special guarantee is made in order to simplify the use of unions: if a union contains
several structures that share a common initial sequence (see below), and if the union
object currently contains one of these structures, it is permitted to inspect the common
initial part of ary of them anywhere that a declaration of the complete type of the union is
visible. Two dructures share @ammon initial sequendécorresponding members v&a
compatible types (and, for bit-fields, the same widths) for a sequence of one or more
initial members.

EXAMPLE 1 If f is a function returning a structure or union, anis a member of that structure or
union,f().x is a valid postfix expression but is not an Ivalue.

EXAMPLE 2 In:

struct s {inti; const int ci; };
struct s s;

const struct s cs;

volatile struct s vs;

the various members vathe types:

S.i int

s.ci const int

cs.i const int

cs.ci const int

VS.i volatile int

vs.ci volatile const int

82) If the member used to access the contents of a union object is not the same as the member last used to
store a value in the object, the appropriate part of the object representationadfi¢his veinterpreted
as an object representation in thevrigpe as described in 6.2.6 (a process sometimes called "type
punning™). Thismight be a trap representation.

83) If &Eis a \alid pointer expression (whegeis the ‘address-of’operator which generates a pointer to
its operand), the expressi@RE)->MOS is the same a&.MOS

86.5.2.3 Language 73

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

o] EXAMPLE 3 The following is a valid fragment:

union {
struct {
int alltypes;
}on
struct {
int type;
int intnode;
}ni
struct {
int type;
double doublenode;
}nf
P
u.nf.type = 1;
u.nf.doublenode = 3.14;
o

if (u.n.alltypes == 1)
if (sin(u.nf.doublenode) == 0.0)
LB |

The following is not a valid fragment (because the union type is not visible within fufigtion

struct t1 {int m; };
struct t2 { int m; };
int f(struct t1 *pl, struct t2 *p2)

{
if (p1->m < 0)
p2->m = -p2->m;
return p1->m;
}
int g()
{
union {
struct t1 s1;
struct t2 s2;
}ous
x
return f(&u.sl, &u.s2);
}

Forward references: address and indirection operators (6.5.3.2), structure and union
specifiers (6.7.2.1).

74 Language 86.5.2.3

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

6.5.2.4 Pstfix increment and decrement operators
Constraints

The operand of the postfix increment or decrement operator shall dualified or
unqualified real or pointer type and shall be a modifiable Ivalue.

Semantics

The result of the postfix+ operator is the alue of the operand. After the result is
obtained, the value of the operand is incremen{&tat is, the value 1 of the appropriate
type is added to it.) See the discussions of adddperators and compound assignment
for information on constraints, types, and wasions and the effects of operations on
pointers. Theside effect of updating the stored value of the operand shall occur between
the previous and the next sequence point.

The postfix-- operator is analogous to the postfix operatoy except that the value of

the operand is decremented (that is, the value 1 of the appropriate type is subtracted from
it).

Forward references: additve goerators (6.5.6), compound assignment (6.5.16.2).

6.5.2.5 Compound literals
Constraints

The type name shall specify an object type or an array of unknown size, but not a variable
length array type.

No initializer shall attempt to provide alue for an object not contained within the entire
unnamed object specified by the compound literal.

If the compound literal occurs outside the body of a function, the initializer list shall
consist of constant expressions.

Semantics

A postfix expression that consists of a parenthesized type nameddlloy a brace-
enclosed list of initializers is @mpound literal It provides an unnamed object whose
value is gien by the initializer list?®

If the type name specifies an array of unknosize, the size is determined by the
initializer list as specified in 6.7.8, and the type of the compound literal is that of the
completed array typeOtherwise (when the type name specifies an object type), the type
of the compound literal is that specified by the type nameither case, the result is an
lvalue.

84) Note that this differs from a castpgression. Br example, a cast specifies aw@rion to scalar types
orvoid only, and the result of a cast expression is not an Ivalue.

86.5.2.5 Language 75

10

11

12

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

The value of the compound literal is that of an unnamed object initialized by the
initializer list. If the compound literal occurs outside the body of a function, the object
has static storage duration; otherwise, it has automatic storage duration associated with
the enclosing block.

All the semantic rules and constraints for initializer lists in 6.7.8 are applicable to
compound literal§>

String literals, and compound literals with const-qualified types, need not designate
distinct object$®)
EXAMPLE 1 The file scope definition

int *p = (int [1){2, 4};

initializes p to point to the first element of an array ofotints, the first having the value dvend the
second, four The expressions in this compound literal are required to be con3taatunnamed object
has static storage duration.

EXAMPLE 2 In contrast, in

void f(void)

{ int *p;
* *l
p = (int[2]){*p};
* *l

}

p is assigned the address of the first element of an arrayoahtsy the first having the value previously
pointed to byp and the second, zerdhe expressions in this compound literal need not be constant. The
unnamed object has automatic storage duration.

EXAMPLE 3 Initializers with designations can be combined with compound literals. Structure objects
created using compound literals can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if drawline instead expected pointersstuct point

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

EXAMPLE 4 A read-only compound literal can be specified through constructions like:
(const float []){1e0, lel, 1e2, 1e3, le4, 1e5, 1e6}

85) For example, subobjects without explicit initializers are initialized to zero.

86) This allovs implementations to share storage for string literals and constant compound literals with
the same orerlapping representations.

76 Language 86.5.2.5

13

14

15

16

17

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

EXAMPLE 5 The following three expressionsvieadfferent meanings:

"tmp/file XXXXXX"
(char [{"tmp/file XXXXXX"}
(const char [)){"/tmp/file XXXXXX"}

The first alvays has static storage duration and has type arrelyasf, but need not be modifiable; the last
two haveautomatic storage duration whenythacur within the body of a function, and the first of these
two is modifiable.

EXAMPLE 6 Like gring literals, const-qualified compound literals can be placed into read-only memory
and caneen be $iared. Br example,

(const char []){"abc"} == "abc"
might yield 1 if the literals’ storage is shared.

EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly
linked object. For example, there is no ay to write a self-referential compound literal that could be used
as the function argument in place of the named objeiess_zeros below:

struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

EXAMPLE 8 Each compound literal creates only a single object inen gtope:

struct s {inti; };

int f (void)
{
struct s *p =0, *q;
intj=0;
again:
q=p, p = &((struct s){j++});
if (j < 2) goto again;
return p == q && g->i == 1,
}

The functionf() always returns the value 1.

Note that if an iteration statement were used instead of an exgicit and a labeled statement, the
lifetime of the unnamed object would be the body of the loop, antyon entry next time arounmwould
have an indeterminate value, which would result in undefined behavior.

Forward references: type names (6.7.6), initialization (6.7.8).

86.5.2.5 Language 77

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.5.3 Unary operators
Syntax

unary-expression:
postfix-expression
++ unary-expression
-~ unary-expression
unary-opeator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator: one of
& * + - ~ |1

6.5.3.1 Pefix increment and decrement operators
Constraints

The operand of the prefix increment or decrement operator shadl dpalified or
unqualified real or pointer type and shall be a modifiable Ivalue.

Semantics

The value of the operand of the prefix operator is incremented. The result is the new
value of the operand after incrementation. The expressidhis equvaent to(E+=1) .

See the discussions of addiigerators and compound assignment for information on
constraints, types, side effects, andweosions and the effects of operations on pointers.

The prefix-- operator is analogous to the prefix operatoy except that the value of the
operand is decremented.

Forward references: additve gperators (6.5.6), compound assignment (6.5.16.2).
6.5.3.2 Addess and indirection operators
Constraints

The operand of the una& operator shall be either a function designatoe result of a
[] or unary* operatoyor an lvalue that designates an object that is not a bit-field and is
not declared with theegister storage-class specifier.

The operand of the unatyoperator shall hae pointer type.
Semantics

The unary& operator yields the address of its operatidhe operand has typetype’, |

the result has type “pointer typ€e’ . If the operand is the result of a unarpperator,
neither that operator nor th& operator is eauated and the result is as if both were
omitted, ecept that the constraints on the operators still apply and the result is not an
lvalue. Similarly if the operand is the result of]a operatoy neither the& operator nor

78 Language 86.5.3.2

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

the unary* that is implied by thg] is evaluated and the result is as if tBeoperator
were remued and the[] operator were changed toraoperator Otherwise, the result is
a pointer to the object or function designated by its operand.

The unary* operator denotes indirectioff. the operand points to a function, the result is

a function designator; if it points to an object, the result is an Ivalue designating the
object. If the operand has type “pointer tgp€’, the result has typetype . If an
invalid value has been assigned to the pojrtex behavior of the unary operator is
undefined”

Forward references: storage-class specifiers (6.7.1), structure and union specifiers
(6.7.2.1).

6.5.3.3 Unaryarithmetic operators
Constraints

The operand of the unary or - operator shall hae aithmetic type; of the- operator,
integer type; of theé operatoyscalar type.

Semantics

The result of the unary operator is the value of its (promoted) operand. The integer
promotions are performed on the operand, and the result has the promoted type.

The result of the unary operator is the rggtive d its (promoted) operand. The integer
promotions are performed on the operand, and the result has the promoted type.

The result of the- operator is the bitwise complement of its (promoted) operand (that is,
each bit in the result is set if and only if the corresponding bit in theeded operand is

not set). The integer promotions are performed on the operand, and the result has the
promoted type. If the promoted type is an unsigned type, the expreg&sisrequvalent

to the maximum value representable in that type nius

The result of the logical getion operator! is O if the value of its operand compares
unequal to O, 1 if the value of its operand compares equal to 0. The result hias$ type
The expressiotE is equvaent to(0O==E) .

87) Thus,&*E is equvalent toE (even if E is a null pointer), an&(E1[E2]) to ((E1)+(E2)) .ltis
always true that ifE is a function designator or an Ivalue that is a valid operand of the &nary
operator*&E is a function designator or an Ivalue equaktdf *P is an Ivalue and is the name of
an object pointer typé(T)P is an Ivalue that has a type compatible with that to whipbints.

Among the inalid values for dereferencing a pointer by the urfargperator are a null pointean
address inappropriately aligned for the type of object pointed to, and the address of an object after the
end of its lifetime.

86.5.3.3 Language 79

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.5.3.4 Thesizeof operator
Constraints

Thesizeof operator shall not be applied to an expression that has function type or an
incomplete type, to the parenthesized name of such a type, or twpeesston that
designates a bit-field member.

Semantics

The sizeof operator yields the size (in bytes) of its operand, which may be an
expression or the parenthesized name of a tylfee size is determined from the type of
the operand. The result is an integHrthe type of the operand is a variable length array
type, the operand isrduated; otherwise, the operand is nedleated and the result is an
integer constant.

When applied to an operand that has tyfp& , unsigned char , orsigned char

(or a qualified version thereof) the result isWWhen applied to an operand that has array
type, the result is the total number of bytes in the &PayWhen applied to an operand

that has structure or union type, the result is the total number of bytes in such an object,
including internal and trailing padding.

The value of the result is implementation-defined, and its type (an unsignget ityjee)
issize_t , defined in<stddef.n> (and other headers).

EXAMPLE 1 A principal use of theizeof operator is in communication with routines such as storage
allocators and I/O system#\ storage-allocation function might accept a size (in bytes) of an object to
allocate and return a pointervoid . For example:

extern void *alloc(size_t);
double *dp = alloc(sizeof *dp);

The implementation of thalloc function should ensure that its returalue is aligned suitably for
corversion to a pointer tdouble .

EXAMPLE 2 Another use of theizeof operator is to compute the number of elements in an array:
sizeof array / sizeof array[0]

EXAMPLE 3 In this example, the size of anable length array is computed and returned from a
function:

#include <stddef.h>
size_t fsize3(int n)

char b[n+3]; I variable length array
return sizeof b; I execution timesizeof

88) When applied to a parameter declared teetaray or function type, theizeof operator yields the
size of the adjusted (pointer) type (see 6.9.1).

80 Language 86.5.3.4

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

int main()

{ . .
size_t size;
size = fsize3(10); // fsize3 returns 13
return O;

}

Forward references: common definitions<stddef.h> (7.17), declarations (6.7),
structure and union specifiers (6.7.2.1), type names (6.7.6), array declarators (6.7.5.2).

6.5.4 Cast operators
Syntax

cast-expression:
unary-expression
(type-name) cast-expression

Constraints

Unless the type name specifies @dvtype, the type name shall specify qualified or
unqualified scalar type and the operand shaiIsealar type.

Corversions that imolve pointers, other than where permitted by the constraints of
6.5.16.1, shall be specified by means of an explicit cast.

Semantics

Preceding an expression by a parenthesized type nanwertsothe value of the
expression to the named type. This construction is calleastf? A cast that specifies
no corversion has no effect on the type or value of goression. |

If the value of the xpression is represented with greater precision or range than reduired
by the type named by the cast (6.3.1.8), then the cast specifiegessimneven if the |
type of the expression is the same as the named type.

Forward references: equality operators (6.5.9), function declarators (including
prototypes) (6.7.5.3), simple assignment (6.5.16.1), type names (6.7.6).

89) A cast does not yield andlue. Thusa st to a qualified type has the same effect as a cast to the
unqualified version of the type.

86.5.4 Language 81

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.5.5 Multiplicative qperators
Syntax

multiplicative-expression:
cast-expression
multiplicative-expressior* cast-expression
multiplicative-expression’ cast-expression
multiplicative-expressiore cast-expression

Constraints

Each of the operands shallvieaaithmetic type. The operands of tB&operator shall
have integer type.

Semantics
The usual arithmetic coarsions are performed on the operands.
The result of the binary operator is the product of the operands.

The result of thé operator is the quotient from the division of the first operand by the
second; the result of tiéoperator is the remaindetn both operations, if the value of
the second operand is zero, the behavior is undefined.

When integers are divided, the result of theperator is the algebraic quotient with any
fractional part discarded) If the quotienta/b is representable, the expression
(a/b)*b + a%b shall equah.

6.5.6 Additive gperators
Syntax

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression multiplicative-expression

Constraints

For addition, either both operands shallveaaithmetic type, or one operand shall be a
pointer to an object type and the other shaNehateger type. (Incrementing is
equialent to adding 1.)

For subtraction, one of the following shall hold:

— both operands va aithmetic type;

90) This is often called “truncationward zero”.

82 Language 86.5.6

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

— both operands are pointers to qualified or unqualifiedions of compatible object
types; or

— the left operand is a pointer to an object type and the right operand has integer type.
(Decrementing is equalent to subtracting 1.)
Semantics

If both operands he aithmetic type, the usual arithmetic e@sions are performed on
them.

The result of the binary operator is the sum of the operands.

The result of the binary operator is the difference resulting from the subtraction of the
second operand from the first.

For the purposes of these operators, a pointer to an object that is not an element of an
array behees the same as a pointer to the first element of an array of length one with the
type of the object as its element type.

When an expression that has integer type is added to or subtracted from a {ha@nter
result has the type of the pointer operand. If the pointer operand points to an element of
an array object, and the array isglarenough, the result points to an element offset from
the original element such that the difference of the subscripts of the resulting and original
array elements equals the e expression. Irother words, if the expressi¢hpoints to

the i-th element of an array object, the expressid)sN (equialently, N+(P)) and

(P)-N (whereN has the value) point to, respectely, thei+n-th andi—n-th elements of

the array object, provided thexist. Moreoer, if the expressiorP points to the last
element of an array object, the expresg®)*1 points one past the last element of the
array object, and if the expressiQpoints one past the last element of an array object,
the expressiofQ)-1 points to the last element of the array objd€tboth the pointer
operand and the result point to elements of the same array object, or one past the last
element of the array object, theakiation shall not produce arveflow; otherwise, the
behaior is undefined. If the result points one past the last element of the array object, it
shall not be used as the operand of a uhargerator that isvaluated.

When two pointers are subtracted, both shall point to elements of the same array object,
or one past the last element of the array object; the result is the difference of the
subscripts of the tavaray elements. The size of the result is implementation-defined,
and its type (a signed integer typeptsdiff_t defined in the<stddef.h> header.

If the result is not representable in an object of that type, thevibehis undefined. In

other words, if the expressioRsandQpoint to, respectely, thei-th andj-th elements of

an array object, the expressi@®)-(Q) has the valué-j provided the &lue fits in an
object of typeptrdiff_t . Moreover, if the expressio points either to an element of

an array object or one past the last element of an array object, and the exQ)essns

to the last element of the same array object, the expregQpti)-(P) has the same

86.5.6 Language 83

10

11

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

vaue as((Q)-(P))+1 and as-((P)-((Q)+1)) , and has the value zero if the
expressionP points one past the last element of the array objeen #ough the
expression(Q)+1 does not point to an element of the array object.

EXAMPLE Pointerarithmetic is well defined with pointers to variable length array types.

{
intn=4, m=3;
int a[n][m];
int *p)[m] =a; //p==2&al0]
p += 1; [p == &a[l]
(p)[2] = 99; Il'a[1][2] == 99
n=p-a; [/ n==1

}

If array a in the abwe example were declared to be an array ofina@onstant size, and pointerwere
declared to be a pointer to an array of the same known constant size (poiat)nghe results would be
the same.

Forward references: array declarators (6.7.5.2), common definiticrstddef.h>
(7.17).

6.5.7 Bitwiseshift operators
Syntax

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

Constraints
Each of the operands shalvkanteger type.
Semantics

The integer promotions are performed on each of the operdigstype of the result is
that of the promoted left operandf the value of the right operand isgaive a is
greater than or equal to the width of the promoted left operand, theidreisaundefined.

91) Another way to approach pointer arithmetic is first tovedrthe pointer(s) to character pointer(s): In
this scheme the integer expression added to or subtracted from viegambpointer is first multiplied
by the size of the object originally pointed to, and the resulting pointer igerteh back to the
original type. For pointer subtraction, the result of thefdience between the character pointers is
similarly divided by the size of the object originally pointed to.

When viewed in this wayan mplementation need only prde one extra byte (which mayeslap
another object in the program) just after the end of the object in order to satishnehpdst the last
element’requirements.

84 Language 86.5.7

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

The result ofE1<<E2 is E1 left-shifted E2 bit positions; vacated bits are filled with
zeros. IfE1 has an unsigned type, thalwe of the result i€1 x 252, reduced modulo
one more than the maximunalue representable in the result type.Elf has a signed
type and nonrggtive \alue, andE1 x 252 is representable in the result type, then that is
the resulting value; otherwise, the behavior is undefined.

The result ofE1>>E2 is E1 right-shiftedE2 bit positions. IfE1 has an unsigned type
or if E1 has a signed type and a nogaere \value, the value of the result is the integral
part of the quotient oE1/ 252, If E1 has a signed type and agaéve \alue, the
resulting value is implementation-defined.

6.5.8 Relational operators
Syntax

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<=shift-expression
relational-expression>= shift-expression

Constraints
One of the following shall hold:
— both operands ha real type;

— both operands are pointers to qualified or unqualifiedions of compatible object
types; or

— both operands are pointers to qualified or unqualifiedsions of compatible
incomplete types.

Semantics

If both of the operands ta aithmetic type, the usual arithmetic e@msions are
performed.

For the purposes of these operators, a pointer to an object that is not an element of an
array behees the same as a pointer to the first element of an array of length one with the
type of the object as its element type.

When two pointers are compared, the result depends on theveelattations in the
address space of the objects pointedftdwo pointers to object or incomplete types both

point to the same object, or both point one past the last element of the same array object,
they compare equallf the objects pointed to are members of the same gdgrebject,
pointers to structure members declared later compare greater than pointers to members
declared earlier in the structure, and pointers to array elements with larger subscript

86.5.8 Language 85

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

values compare greater than pointers to elements of the same arrayweithsidoscript
values. All pointers to members of the same union object compare equal. If the
expressionP points to an element of an array object and the expre§spmints to the

last element of the same array object, the pointer expreQgsiticompares greater than

P. In dl other cases, the behavior is undefined.

Each of the operators (less than)> (greater than)<= (less than or equal to), amd
(greater than or equal to) shall yield 1 if the specified relation is true and 0 if it i$4alse.
The result has typat .

6.5.9 Equality operators
Syntax

equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression= relational-expression

Constraints

One of the following shall hold:

— both operands va aithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version @bid ; or

— one operand is a pointer and the other is a null pointer constant.
Semantics

The == (equal to) and!= (not equal to) operators are analogous to the relational
operators except for their lower precedet®eEach of the operators yields 1 if the
specified relation is true and O if it ial$e. Theresult has typent . For ary pair of
operands, exactly one of the relations is true.

If both of the operands tia aithmetic type, the usual arithmetic c@sions are
performed. ¥lues of compbetypes are equal if and only if both their real parts are equal
and also their imaginary parts are equal.yAwo values of arithmetic types from
different type domains are equal if and only if the results of thewersions to the
(compl) result type determined by the usual arithmetiozexmions are equal.

92) The expressiora<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it
meanga<b)<c ;in other words, “ifa is less thaib, compare 1 t@; otherwise, compare 0 ©'.

93) Because of the precedenaesh == c<d is 1 whengera<b andc<d have the same truth-value.

86 Language 86.5.9

WG14/N1256 CommitteBraft — Septermber 7, 2007 I1SO/IEC 9899:TC3

Otherwise, at least one operand is a pointeone operand is a pointer and the other is a
null pointer constant, the null pointer constant isveted to the type of the pointetf

one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version ebid , the former is coverted to the type of the latter.

Two pointers compare equal if and only if both are null pointers, both are pointers to the
same object (including a pointer to an object and a subobiject at its beginning) or function,
both are pointers to one past the last element of the same array object, or one is a pointer
to one past the end of one array object and the other is a pointer to the start of a different
array o)bject that happens to immediately follthe first array object in the address
space’*

For the purposes of these operators, a pointer to an object that is not an elemerit of an
array behees the same as a pointer to the first element of an array of length one with the
type of the object as its element type.

6.5.10 BitwiseAND operator
Syntax

AND-expression:
equality-expression
AND-expression& equality-expression

Constraints

Each of the operands shalMeanteger type.

Semantics

The usual arithmetic coersions are performed on the operands.

The result of the binar& operator is the bitwis&ND of the operands (that is, each bit in
the result is set if and only if each of the corresponding bits in therted operands is
set).

94) Two objects may be adjacent in memory becausg #he adjacent elements of a larger array or
adjacent members of a structure with no padding between them, or because the implementation chose
to place them soyen though thg are unrelated. If prior ivalid pointer operations (such as accesses
outside array bounds) produced undefined behastibsequent comparisons also produce undefined
behavior.

86.5.10 Language 87

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.5.11 Bitwise exclusie OR operator
Syntax

exclusive-OR-expression:
AND-expression
exclusive-OR-expressiort AND-expression

Constraints

Each of the operands shalMeanteger type.

Semantics

The usual arithmetic coersions are performed on the operands.

The result of thé operator is the bitwise exclysiOR of the operands (that is, each bit
in the result is set if and only if exactly one of the corresponding bits in tivertsah
operands is set).

6.5.12 Bitwise inclusve OR operator
Syntax

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expressiolh exclusive-OR-expression

Constraints

Each of the operands shaliMeanteger type.

Semantics

The usual arithmetic coarsions are performed on the operands.

The result of thg¢ operator is the bitwise inclus OR of the operands (that is, each bit in
the result is set if and only if