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Abstract

In shared-memory parallel programs that use explicit synchronization, race conditions result
when accesses to shared memory are not properly synchronized. Race conditions are often con-
sidered to be manifestations of bugs since their presence can cause the program to behave unex-
pectedly. Unfortunately, there has been little agreement in the literature as to precisely what con-
stitutes a race condition. Two different notions have been implicitly considered: one pertaining to
programs intended to be deterministic (which we call general races) and the other to nondeter-
ministic programs containing critical sections (which we call data races). However, the differ-
ences between general races and data races have not yet been recognized. This paper examines
these differences by characterizing races using a formal model and exploring their properties. We
show that two variations of each type of race exist: feasible general races and data races capture
the intuitive notions desired for debugging and apparent races capture less accurate notions impli-
citly assumed by most dynamic race detection methods. We also show that locating feasible races
is an NP-hard problem, implying that only the apparent races, which are approximations to feasi-
ble races, can be detected in practice. The complexity of dynamically locating apparent races
depends on the type of synchronization used by the program. Apparent races can be exhaustively
located efficiently only for weak types of synchronization that are incapable of implementing
mutual exclusion. This result has important implications since we argue that debugging general
races requires exhaustive race detection and is inherently harder than debugging data races (which
requires only partial race detection). Programs containing data races can therefore be efficiently
debugged by locating certain easily identifiable races. In contrast, programs containing general
races require more complex debugging techniques.
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1. Introduction

In shared-memory parallel programs, if accesses to shared memory are not properly synchronized, time-

dependent failures† called race conditions can result. Race conditions occur when different processes access shared

data without explicit synchronization. Because races can cause the program to behave in ways unexpected by the

programmer, detecting them is an important aspect of debugging. However, in the literature, there seems to be little

agreement as to precisely what constitutes a race condition. Indeed, two different notions have been used, but the

distinction between them has not been previously recognized. Because no consistent terminology has appeared,

several terms have been used with different intended meanings, such as access anomaly[6-8, 12, 18], data

race[1, 4, 5, 11, 16, 20, 22], critical race[13], harmful shared-memory access[24], race condition[10, 26], or just

race[2, 9, 17]. This paper explores the nature of race conditions and uncovers some previously hidden issues

regarding the accuracy and complexity of dynamic race detection. We present the following results.

(1) Two fundamentally different types of races, that capture different kinds of bugs in different classes of paral-

lel programs, can occur. General races cause nondeterministic execution and are failures in programs

intended to be deterministic. Data races cause non-atomic execution of critical sections and are failures in

(nondeterministic) programs that access and update shared data in critical sections‡.

(2) To represent the sources of race conditions precisely, we formally characterize the intuitive notion of a race

we wish to detect for debugging (which we call a feasible race). In contrast, we show that there is a simpler

to detect but less accurate notion of a race that most previously proposed race detection methods locate

(which we call an apparent race). Feasible races are based on the possible behavior of the program;

apparent races, which are approximations to feasible races, are based on only the behavior of the program’s

explicit synchronization (and not the semantics of the program’s computation).

(3) Exactly locating the feasible general races or data races is an NP-hard problem. This result implies that the

apparent races, which are simpler to locate, must be detected for debugging in practice.

(4) Apparent races can be exhaustively located efficiently only for programs that use synchronization incapable

of implementing mutual exclusion (such as fork/join or Post/Wait synchronization without Clear opera-

tions); detection is NP-hard for more powerful types of synchronization (such as semaphores).

(5) Debugging race conditions in programs intended to be deterministic is inherently more difficult than in non-

deterministic programs. Races that cause non-atomic execution of critical sections (data races) are ‘‘local’’

properties of the execution and can be detected directly from an execution trace. In contrast, races that cause

nondeterministic execution (general races) are ‘‘global’’ properties of the program whose detection requires

analyzing the entire execution to compute alternative event orderings possibly exhibited by the program.

These results provide an understanding of race conditions important for dynamic race detection. Previous

work has not provided unambiguous characterizations of the different types of race conditions or related races to

program bugs. For example, race conditions have only been defined as occurring when two shared-memory
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† To be consistent with the fault tolerant research community[25], a failure occurs when a program’s external behavior differs from its

specification, and a fault is its algorithmic cause (although we use the term bug).

‡ There is some controversy over terminology that is the most descriptive. In place of data race and general race, atomicity race and deter-

minacy race have also been suggested.
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references ‘‘can potentially execute concurrently’’[6] or have no ‘‘guaranteed run-time ordering’’[10]. Our work is

novel since we explicitly characterize two different types of race conditions using a formal model and explore their

properties. The distinction between general races and data races is necessary because they are manifestations of dif-

ferent types of program bugs and require different detection techniques. Using a model has the advantage that

issues regarding the accuracy and complexity of dynamic race detection then become clear. The accuracy issues

have implications for debugging: accurate race detection means that races that are direct manifestations of program

bugs are pinpointed, while less accurate detection can report spurious races that mislead a programmer. The com-

plexity issues show which types of races allow exact and efficient detection and which can be only approximately

located.

Our results show that locating exactly the desired races (the feasible races) is computationally intractable.

Indeed, previously proposed race detection methods take an easier approach and locate only a subset of the apparent

races. However, we argue that apparent races can often be spurious, and that effective debugging requires more

sophisticated techniques. Race conditions can be debugged by attempting to determine which of these located

(apparent) races are of interest for debugging (i.e., are feasible). Our results show that there is also a fundamental

disparity between debugging race conditions in deterministic and nondeterministic programs. Nondeterministic pro-

grams that use critical sections can be safely debugged (to find data races) because we can easily determine if an

execution is data-race free; when data races occur, the feasible races can be approximately located. However,

debugging programs intended to be deterministic (to find general races) is inherently harder. We can be confident

that execution was deterministic only if exhaustive race detection shows an absence of general races (and this is

efficient only for programs using synchronization incapable of implementing mutual exclusion).

2. Examples

Explicit synchronization is often added to shared-memory parallel programs to coordinate accesses to shared

data. Without proper coordination, different types of race conditions can result. To motivate these different types

of races, we present an example of each. In subsequent sections we will characterize them in terms of a formal

model and investigate their properties.

One purpose of adding explicit synchronization to shared-memory parallel programs is to implement critical

sections, which are blocks of code intended to execute as if they were atomic. Atomic execution means that the

final state of variables read and written in the section depends only upon their initial state at the start of the section

and upon the operations performed by the code (and not operations performed by another process). Bernstein’s con-

ditions state that atomic execution is guaranteed if shared variables that are read and modified by the critical section

are not modified by any other concurrently executing section of code[3]. A violation of these conditions has typi-

cally been called a data race[1, 4, 5, 11, 16, 17, 20, 22] or access anomaly[6-8, 18]. We prefer the term data race.

Figure 1 shows an example program for which a data race is considered a failure. This program processes

commands from bank tellers that make deposits and withdrawals for a given bank account. Figure 1(a) shows a

correct version of the program. Since the variables balance and interest are shared, operations that mani-

pulate them are enclosed in critical sections. Because critical sections can never execute concurrently, this version

will exhibit no data races. Figure 1(b) shows an erroneous version that can exhibit data races; the P and V opera-

tions that enforced mutual exclusion are missing. The deposit and withdraw code can therefore execute con-

currently, causing their individual statements to effectively interleave, possibly violating the atomicity of one of the
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Process 1 Process 2

/* DEPOSIT */
amount = read_amount();
P(mutex);
balance = balance + amount;
interest = interest + rate*balance;
V(mutex);

/* WITHDRAW */
amount = read_amount();
P(mutex);
if (balance < amount)

printf("NSF");
else {

balance = balance - amount;
interest = interest + rate*balance;

}
V(mutex);

(a): no-data-race version

Process 1 Process 2

/* DEPOSIT */
amount = read_amount();
P(mutex);
balance = balance + amount;
interest = interest + rate*balance;
V(mutex);

/* WITHDRAW */
amount = read_amount();
if (balance < amount)

printf("NSF");
else {

balance = balance - amount;
interest = interest + rate*balance;

}

(b): data-race version

Figure 1. (a) C program fragment manipulating bank account, and (b) erroneous version exhibiting data races

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

intended critical sections. The data races in this program are considered failures because the intent was that the

deposit and withdrawal code execute atomically, without interference from other processes.

Even though programs like the one in Figure 1 may contain critical sections, they are often intended to be

nondeterministic (e.g., the order of deposits and withdrawals may occur unpredictably, depending on how fast the

tellers type). However, other classes of programs are intended to be completely deterministic, and a different type

of race condition pertains to such programs. In these programs, synchronization provides determinism by forcing

all accesses to the same shared resource to always execute (on a given input) in a specific order. For a given input,

all executions of such programs always produce the same result, regardless of any random timing variations among

the processes in the program (e.g., due to unpredictable interrupts, or other programs that may be executing on the

same processors). Nondeterminism is generally introduced when the order of two accesses to the same resource is

not enforced by the program’s synchronization. The existence of two such unordered accesses has been called a

race condition[9, 10, 26], access anomaly[12], critical race[13], or harmful shared-memory access[24]. For a more

consistent terminology, we propose the term general race, since such a race is more general than a data race.
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As an example of programs for which general races are manifestations of bugs, consider parallel programs

that are constructed from sequential programs by parallelizing loops. The sequential version of a program behaves

deterministically, producing a particular result for any given input. Typically, the parallelized version is intended to

have the same semantics. Preserving these semantics can be accomplished by adding synchronization to the pro-

gram that ensures all of the data dependences ever exhibited by the sequential version are also exhibited by the

parallel version. Such programs exhibit no general races, since preserving these dependences requires that all

operations on any specific location are performed in some specific order (independent of external timing variations).

Both general races and data races are notions that are necessary for debugging. Although they both occur

when shared-memory accesses occur in an incorrect or unexpected order, they are manifestations of different types

of bugs that occur in different classes of parallel programs.

The notion of a data race is needed to discover critical sections that were not implemented properly (i.e., those

whose atomicity may have failed). The notion of a general race is needed to discover potential nondeterminism

anywhere in the program execution. Data races alone will not suffice for these purposes, since a program can exhi-

bit no data races but still be nondeterministic. General races alone will not suffice, since general races that are not

data races are not always failures. The preceding examples illustrate these cases. For example, the no-data-race

version of Figure 1 executes nondeterministically, depending on when commands are entered by the tellers. This

version correctly exhibits no data races (its critical sections execute atomically), even though it is nondeterministic.

However, even though general races occur, they are not considered to be manifestations of bugs.

General races and data races also pertain to different classes of parallel programs. General races are typically

of interest for programs in which determinism is implemented by forcing all shared-memory accesses (to the same

location) to occur in a specific order. Many scientific programs fall into this category (e.g., those constructed by

many automatic parallelization techniques). In contrast, data races are typically of interest for asynchronous pro-

grams. Programs using shared work-pools fall into this category. They are not intended to be deterministic, but

critical sections (that access shared data) are still expected to behave atomically.

Emrath and Padua have also characterized different types of race conditions but have only addressed pro-

grams intended to be deterministic[9]. They considered four levels of nondeterminism of a program (on a given

input). Internally deterministic programs are those whose executions on the given input exhibit no general races.

Externally deterministic programs exhibit general races, but they do not cause the final result of the program to

change from run to run. Associatively nondeterministic programs exhibit general races only between associative

arithmetic operations and are externally nondeterministic only because of roundoff errors (different runs can pro-

duce different roundoff errors). Finally, completely nondeterministic programs are those exhibiting general races

that do not fall into one of the above categories. Our work complements these characterizations by also considering

nondeterministic programs and data races, and by using a formal framework.

3. Formal Model for Reasoning About Race Conditions

Now that we have given examples illustrating different types of race conditions, we next discuss how they can

be characterized using a formal model. Doing so not only provides unambiguous characterizations of each, but also

provides a mechanism with which to reason about their properties. In this section, we briefly overview our model

for reasoning about race conditions that was first presented in an earlier paper[22] and that is based on Lamport’s

theory of concurrent systems[15]. Our model consists of two parts: one to represent the actual behavior exhibited

by the program and the other to represent potential behaviors possibly exhibited by the program.
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3.1. Actual Program Executions

The first part of our model is simply a notation for representing an execution of a shared-memory parallel pro-

gram on a sequentially consistent[14] processor†. A program execution, P, is a triple, 〈E, T , D 〉, where E is a

finite set of events, and T (the temporal ordering relation) and D (the shared-data dependence relation) are

relations‡ over those events. Intuitively, E represents the actions performed by the execution, T represents the

order in which they are performed, and D shows how events affect one another through accesses to shared

memory. We refer to P as an actual program execution when P represents an execution that the program at hand

actually performed.

Each event e ∈ E represents both the execution instance of a set of program statements and the sets of shared

memory locations they read and write. A synchronization event represents an instance of some synchronization

operation; a computation event represents the execution instance of any group of statements (belonging to the same

process) that executed consecutively, none of which are synchronization operations. A data conflict exists between

two events if one writes a shared memory location that the other reads or writes.

For two events, a and b, a T b means that a completes before b begins (in the sense that the last action of a

can affect the first action of b), and a /
T b means that a and b execute concurrently (i.e, neither completes be-

fore the other begins). We should emphasize that T is defined to describe the actual execution order between

events in a particular execution; e.g., a /
T b means that a and b actually execute concurrently; it does not mean

that they could have executed in any order. A shared-data dependence a D b exists if a accesses a shared vari-

able that b later accesses (where at least one access modifies the variable), or if a precedes b in the same process

(since data can in general flow through non-shared variables local to the process). A dependence also exists if there

is a chain of dependences from a to b; e.g., if a accesses a shared variable that another event, c, later accesses, and c

then references a variable that b later references.

3.2. Feasible Program Executions

An actual program execution is a convenient notation for describing the behavior of a particular execution.

However, to characterize race conditions, it is necessary to also describe behavior that the program could have exhi-

bited. Most previous work has not explicitly considered this issue; race conditions have typically been defined only

as data-conflicting accesses ‘‘that can execute in parallel’’[6] or whose execution order is not ‘‘guaranteed’’[10].

Such definitions implicitly refer to a set of alternative orderings that had the potential of occurring. Our work is

novel in that we explicitly define these sets of orderings. The second part of our model characterizes sets of feasible

program executions, which represent other executions that had the potential of occurring. We next discuss several

possible ways in which these sets can be defined. Instead of simply intuitively reasoning about alternative order-

ings, formally defining these sets uncovers issues important for debugging.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† Sequential consistency ensures that shared-memory accesses behave as if they were all performed atomically and in some linear order.

The model also contains axioms describing properties that any program execution must possess[22]. We omit these axioms here as they are un-

necessary for simply characterizing race conditions.

‡ Superscripted arrows denote relations, and a / b is a shorthand for ¬ (a b) ∧ ¬ (b a).
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To characterize when a race condition exists between two events, a and b, in an actual program execution

P = 〈E, T , D 〉, we must consider other program executions that also perform a and b. Characterizing such ex-

ecutions allows us to determine if a and b can potentially execute in an order different than in P. We focus on pro-

gram executions, P′ = 〈E′, T ′ , D ′ 〉, that are prefixes of P and implicitly consider executions on the same input

as P. P ′ is a prefix of P if each process in P ′ performs the same events as some initial part of the corresponding pro-

cess in P. Focusing on prefixes allows us to pinpoint where nondeterminacy is introduced. If P ′ were not required

to be a prefix of P, we could not in general determine where or if a and b occur in P ′. When P ′ contains a different

number of execution instances of some statement, we can not draw a correspondence between events in P and

events in P ′ (because events are defined to represent the execution instance of one or more statements).

We define three sets of program execution prefixes by considering successively fewer restrictions on the dif-

ferent ways in which P’s events could have been performed. We will see that these different sets characterize races

with varying accuracy and complexity. The first two sets are restricted to contain only program executions that are

feasible (i.e., that could have actually occurred); these sets characterize races most accurately. The first set, denoted

FSAME, contains all feasible executions that exhibit the same shared-data dependences as P; the second set, denoted

FDIFF, contains feasible executions with no restrictions on their shared-data dependences. FDIFF includes all execu-

tions that perform a prefix of the events performed by P regardless of which shared-data dependences may result.

FSAME includes the executions that perform exactly the same events and exhibit the same shared-data dependences†

as P.

Definition 3.1

FSAME is the set of program executions, P′ = 〈E′, T ′ , D ′ 〉, such that

(1) P ′ represents an execution that the program could actually perform,

(2) E ′ = E, and

(3) D ′ = D .

Definition 3.2

FDIFF is the set of program executions, P′ = 〈E′, T ′ , D ′ 〉, such that

(1) P ′ represents an execution the program could actually perform,

(2) P ′ is a prefix of P, and

(3) D ′ represents any shared-data dependences that satisfy (1) and (2).

The last set, denoted FSYNC, also contains executions with arbitrary shared-data dependences, but they are no

longer required to be feasible; they are only required to obey the semantics of the program’s explicit synchroniza-

tion. This simpler set characterizes races less accurately, but is a useful approximation to FDIFF that involves only

the semantics of explicit synchronization (and not the program). Moreover, since previous race detection methods

analyze only explicit synchronization, FSYNC is the set of alternative executions they implicitly assume.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† The structure of this set depends on the details of our definition of shared-data dependence. Although different definitions are possible

(e.g., that characterize only flow dependences), they would not alter this structure in a significant way.
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Definition 3.3

FSYNC is the set of program executions, P′ = 〈E′, T ′ , D ′ 〉, such that

(1) T ′ obeys the semantics of the program’s explicit synchronization,

(2) P ′ is a prefix of P, and

(3) D ′ represents any shared-data dependences that satisfy (1) and (2).

FSYNC includes all executions that would have been possible had P not exhibited any shared-data dependences

(or any dependences that affect control flow). Since programs in general access shared-memory, FSYNC may include

executions the program could never exhibit. For example, assume that one process in P assigns to a shared variable

S the value 1, and then another process conditionally executes a procedure only if S equals 1. If no explicit syn-

chronization forces the assignment to occur before the procedure call, then FSYNC will contain an execution in which

the procedure is called before S is assigned 1. However, since the procedure can be called only if S equals 1, such

an execution is not feasible (assuming that S is not initialized to 1). In general, for another execution to perform the

same events as P, it must also exhibit the same shared-data dependences as P; when general races occur (whether or

not they are considered failures), FSYNC may contain infeasible executions[19, 22]. As discussed later, the existence

of such infeasible executions impacts the accuracy of races reported by methods that analyze only explicit synchron-

ization. Nevertheless, we will see that this notion is useful because it allows a simple characterization of race condi-

tions that are easy to detect.

4. Issues in Characterizing Race Conditions

We now characterize general races and data races in terms of our model and explore some issues that arise.

We show that two different types of each race exist. One type, the feasible race, captures the intuitive notion that

we wish to express, but is NP-hard to locate exactly. The other type, the apparent race, captures a less accurate no-

tion (assumed by most race detection methods) but can be more easily detected. Moreover, we argue that debug-

ging programs intended to be deterministic (to find general races) requires exhaustive race detection and is inherent-

ly harder than debugging nondeterministic programs that use critical sections (to find data races), which requires

only partial race detection.

4.1. General Races and Data Races

Intuitively, a general race potentially introduces nondeterminism and exists in a program execution P if two

events a and b have data conflicts and their access order is not ‘‘guaranteed’’ by the execution’s synchronization. A

data race potentially causes the atomicity of critical sections to fail and exists if a and b either execute concurrently

or have the potential of doing so. To explore the nature of races, we first formalize what it means to potentially exe-

cute concurrently (or in a different order) by using the different sets of program executions discussed above. For

example, a general race exists if a and b occur in some feasible program execution in an order different than in P.

Similarly, a data race exists if some feasible program execution exists in which a and b execute concurrently. We

first define the notion of a general race or data race between a and b (denoted 〈a,b〉) over some given set of program

executions, F, and then consider the implications of different choices for the set F.
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Definition 4.1

A general race 〈a,b〉 over F exists iff

(1) a data conflict exists in P between a and b, and

(2) there exists a program execution, P′ = 〈E′, T ′ , D ′ 〉 ∈ F, such that a,b ∈ E ′ and

(a) b T ′ a if a T b, or

(b) a T ′ b if b T a, or

(c) a /
T ′ b.

Condition (2) is true if a and b can occur in an order opposite as in P or concurrently; these cases capture the notion

that the execution order among a and b is not ‘‘guaranteed’’.

Definition 4.2

A data race 〈a,b〉 over F exists iff

(1) a data conflict exists in P between a and b, and

(2) there exists a program execution, P′ = 〈E′, T ′ , D ′ 〉 ∈ F, such that a,b ∈ E ′ and a /
T ′ b.

4.2. Feasible Races

The most natural way to characterize a race 〈a,b〉 is to consider races over FDIFF, since FDIFF precisely cap-

tures the set of possible executions that also perform a and b. For general races, we have no choice: the smaller set

FSAME is inadequate since, by definition, a general race exists between two accesses only if they execute in an order

different than in P (and therefore the shared-data dependence between them is also different). In contrast, data races

could be reasonably viewed as occurring over either FDIFF or FSAME.

Definition 4.3

A feasible general race 〈a,b〉 exists iff a general race 〈a,b〉 over FDIFF exists.

A feasible data race 〈a,b〉 exists iff a data race 〈a,b〉 over FDIFF exists.

A feasible race locates precisely those portions of the execution that allowed a race, and thus represents the

intuitive notion of a race illustrated in Section 2. However, checking for the presence of a feasible general race or

data race 〈a,b〉 requires determining whether a feasible program execution in which b T ′ a (or a T ′ b, or a

/
T ′ b) is a member of FDIFF. We have proven that deciding these membership problems is NP-hard (no matter

what type of synchronization the program uses) and that locating feasible races is also NP-hard[19, 21]. It is there-

fore an intractable problem to locate precisely the race conditions exhibited by an execution of the program. This

result suggests that, in practice, we must settle for an approximation, discussed next. Indeed, previously proposed

race detection methods compute such an approximation.

4.3. Apparent Races

In practice, locating the intuitive notion of a race (a feasible race) would require analyzing the program’s se-

mantics to determine if the execution could have allowed b to precede a (or b to execute concurrently with a). Pre-

viously proposed methods take a simpler approach and analyze only the explicit synchronization performed by the

execution. For example, a and b are said to have potentially executed concurrently (or in some other order) if no
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explicit synchronization prevented them from doing so. We can characterize the races detected by this approach by

using FSYNC, which is based only on orderings that the program’s explicit synchronization might allow. Because the

program may not be able to exhibit such orderings, these races capture a less accurate notion than feasible races.

Definition 4.4

An apparent general race 〈a,b〉 exists iff a general race 〈a,b〉 over FSYNC exists.

An apparent data race 〈a,b〉 exists iff a data race 〈a,b〉 over FSYNC exists.

Because not all program executions in FSYNC are feasible, some apparent races may be spurious. Spurious

races can occur whenever the values of shared variables are used (directly or indirectly) in conditional expressions

or shared-array subscripts[20, 22]. In such cases, the existence of one event may depend on another event occurring

first. For example, consider one process in P that adds data to a shared buffer and then sets a flag BufEmpty to false,

and another process that first tests BufEmpty and then removes data from the buffer only if BufEmpty equals false.

Such an execution has two apparent general races, between the accesses to BufEmpty and between the accesses to

the buffer. However, the race involving the buffer is spurious — no feasible execution exists in which data is re-

moved from the buffer before the buffer is filled (since BufEmpty is first tested before data is removed). If the

operations on the shared buffer were instead complex and involved many shared-memory references, a large

number of spurious races could be reported. Spurious races pose a problem since they are not direct manifestations

of any program bug[20, 22]. The programmer can be overwhelmed with large amounts of misleading information,

irrelevant for debugging, that masks the location of actual failures. Nonetheless, apparent race detection provides

valuable information, since apparent races exist if and only if at least one feasible race exists somewhere in the exe-

cution[22]. Moreover, we have proven results showing how to reason about the potential feasibility of apparent

races, and how a post-mortem race detector can be extended to conservatively determine which apparent races are

feasible and of interest for debugging[20-22].

We have also proven that, for program executions using synchronization powerful enough to implement two-

process mutual exclusion, determining membership in FSYNC and locating apparent races is NP-hard[19]. Member-

ship in FSYNC is efficiently computable only for weaker synchronization incapable of implementing mutual exclusion

(such as Post/Wait style synchronization without Clear operations); all apparent races can thus be efficiently

detected in executions of such programs[23]. It is important to note that data races are not of interest for such pro-

grams since weaker synchronization cannot implement critical sections. Exhaustively locating all apparent data

races is therefore always NP-hard. In contrast, the complexity of apparent general race detection depends on the

type of synchronization used. However, as we discuss next, it is sufficient for debugging data races to detect only a

certain subset of the apparent races, while debugging general races requires exhaustive detection.

4.4. Debugging with Race Condition Detection

An important aspect of debugging involves determining whether portions of the execution are race-free in the

sense that they are unaffected by incorrect or inconsistent data produced by a race[5, 20]. For example, a program-

mer browsing an execution trace might focus only on portions of the trace recorded before any races occurred.

These portions of the trace contain events that are guaranteed to be unaffected by the outcome of any race. Locating

such events is important because the program may exhibit meaningless behavior after a race. In Figure 1(b), for ex-

ample, a data race that results in a negative balance might cause subsequent withdrawals to fail because of

insufficient funds when in fact more money has been deposited than withdrawn. To locate events unaffected by a
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race, it is necessary to determine if portions of the execution are race free. However, we now argue that making this

determination is inherently harder for general races (which introduce nondeterminism) than for data races (which

only cause critical sections to fail). For executions containing data races, it suffices to detect the presence (or ab-

sence) of only a certain subset of the apparent races. In contrast, to debug executions containing general races, it is

necessary to perform exhaustive apparent general race detection.

Data races can be viewed as a local property of the execution which can be determined directly from the actu-

al program execution, P. Because an intended critical section can execute non-atomically only when other data-

conflicting events are concurrently executing, an actual data race can be detected directly from P.

Definition 4.5

An actual data race 〈a,b〉 exists iff a data race 〈a,b〉 in P exists†.

An actual data race indicates the possibility that the atomicity of a critical section may have actually failed. In con-

trast, general races are a global property of the program which can be determined only by computing alternative

event orderings. In general, determining if two events could have occurred in a different order requires analyzing

the synchronization over the entire execution; there is no notion of an actual general race. Thus, unlike general

races, actual data races can be easily located if the temporal ordering, T , is known; computing alternative order-

ings is unnecessary.

This difference has important implications for debugging. Apparent data races that are not actual data races

cannot produce inconsistent data (because no critical sections fail), but any apparent general race indicates such a

possibility (because two shared-memory accesses could have executed in the incorrect order). The absence of an

actual data race therefore indicates that all intended critical sections in P executed atomically, and the location of an

actual race pinpoints places in the execution where inconsistent data should be expected. Even though not all ap-

parent data races can be efficiently located, we can efficiently determine whether any actual data races occurred.

Thus, we can easily determine whether the observed execution contains inconsistent data which cannot be relied

upon for debugging. However, because there is no notion of an actual general race, we must exhaustively locate all

apparent general races to make this determination. Only if no apparent races exist can we be sure that all shared-

memory references occurred in the expected order (because no other order was possible).

These results suggest that we can efficiently debug programs containing data races by locating all actual and

some apparent data races. However, we can only apply such an approach to programs containing general races if all

apparent races can be efficiently located. As discussed above, exhaustive apparent general race detection is efficient

only for programs that use synchronization incapable of implementing mutual exclusion. However, for more

powerful types of synchronization (such as semaphores), conservative approximations that locate a superset of the

apparent general races have been proposed[10, 11]. Such methods provide a means of debugging general races in

programs using such synchronization, but have the potential of misleading the programmer with potentially large

numbers of spurious race reports.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† A data race in P exists iff a data race exists over {P}, the set containing only P.
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5. Conclusion

This paper explores the nature of race conditions that can arise in shared-memory parallel programs. By em-

ploying a formal model we uncover previously hidden issues regarding the accuracy and complexity of dynamic

race detection. We show that two fundamentally different types of races can occur: general races, pertaining to

deterministic programs, and data races, pertaining to nondeterministic programs that use critical sections. We for-

mally characterize these types of races. Previously, races have only been defined intuitively as occurring between

data-conflicting blocks of code that ‘‘can potentially execute concurrently’’ or whose execution order is not

‘‘guaranteed’’. Our work is novel in that we explicitly characterize sets of alternative orderings that had the poten-

tial of occurring. Doing so is important because properties of the defined races, such as the accuracy and complexi-

ty of detecting them, depend upon which sets are considered. We uncover two variations of each type of race: one

describes the intuitive notion of a race (the feasible race) and the other describes a less accurate notion (the apparent

race) assumed by most race detection methods. Since locating the feasible races is NP-hard, the less accurate ap-

parent races must be relied upon for debugging in practice. Moreover, we uncover fundamental differences in the

complexity of debugging general races and data races. Debugging general races requires exhaustively computing

alternative orderings (to determine whether the execution is nondeterministic), which is NP-hard for programs using

synchronization powerful enough to implement mutual exclusion. Debugging data races requires simpler analyses

(to determine if critical sections fail), which can be efficiently performed.
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